
DLL User's Guide for the
AlphiDll

SOFTWARE REFERENCE

745-06-002-4000
Revision G
01/22/01

 Copyright © 1999-2001 ALPHI Technology Corp.

 ALPHI Technology Corp.
 6202 S. Maple Ave., #120

 Tempe, AZ 85283
 Tel: (480) 838-2428
 Fax: (480) 838-4477
 info@alphitech.com
 www.alphitech.com

DLL User's Guide for the AlphiDll - 01/22/01 ii

Table of Contents

Description...1

Device Names...1

Direct Access by DSP (PLX) ..2

DMA (AMCC)..3

DMA (PLX)..3

Doorbells (PLX) ...4

Driver Installation..4

Driver Load..4

FIFOs ..5

Function Returns (HRESULTs) ..5

Host Interrupts (AMCC) ..6

Host Interrupts (PLX)..7

Language Issues ..7

Linking to this DLL ...7

Mailboxes...8

Maps...8

Software Modules...9

Module AlphiDll.cpp..9

Module AlphiDll.h..9

Module Amcc.cpp...9

Module Amcc.h ..9

Module AmccPort.cpp ...9

Module AmccPort.h ...10

Module Base.cpp ..10

Module Base.h ..10

Module ddalphip.h ...10

Module DisplayErrorCode.cpp..10

Module DisplayErrorCode.h ...10

Module ErrorCode.h..11

Module Plx.cpp...11

Module Plx.h ..11

HRESULTs and associated messages ..12

DLL User's Guide for the AlphiDll - 01/22/01 iii

ALPHI_E_BAD_CARD_CONFIGURATION ...12

ALPHI_E_BAD_FILENAME ...12

ALPHI_E_CANT_GET_DEVICE_CAPABILITIES...12

ALPHI_E_CANT_SUPPORT_THIS_DEVICE ...12

ALPHI_E_DEVICE_FAILED_RESET..12

ALPHI_E_DEVICE_NOT_OPEN ..13

ALPHI_E_DSP_FAILED_ACK_COMMAND_PACKET...13

ALPHI_E_DSP_FAILED_COMMAND_PACKET ...13

ALPHI_E_DSP_FAILED_READ_COMMAND_PACKET ..13

ALPHI_E_DSP_NOT_RESPONDING...13

ALPHI_E_DSP_NOT_RUNNING_KERNEL..13

ALPHI_E_ERROR_PARSING_FILE..14

ALPHI_E_FAILED_TO_MAP_REGION..14

ALPHI_E_FAILED_TO_OPEN_FILE_FOR_DOWNLOAD ...14

ALPHI_E_FAILED_TO_START_DOWNLOAD..14

ALPHI_E_FUNCTION_NOT_APPLICABLE...14

ALPHI_E_HOOK_ALREADY_SET..14

ALPHI_E_MAP_NOT_APPLICABLE ..15

ALPHI_E_NO_DEVICE_BY_THIS_NAME ...15

ALPHI_E_NO_DOWNLOAD...15

ALPHI_E_OPERATION_TIMED_OUT ...15

ALPHI_E_PARM_OUT_OF_RANGE ...15

ALPHI_E_UNEXPECTED_CONDITION...15

ALPHI_E_WRONG_PROCESSOR ...16

ALPHI_I_FUNCTION_NOT_NEEDED ..16

ALPHI_I_OPEN_LIMITED_FUNCTIONALITY...16

ALPHI_S_DSP_ACK ..16

ALPHI_S_OK ..16

ALPHI_W_DEVICE_FAILED_RESET...16

ALPHI_W_OPEN_FAILED_TO_MAP_PCI_REGISTERS ...17

Classes and Members...18

AlphiPciDevice Class ...18

AlphiPciDevice::AlphiPciDevice..21

AlphiPciDevice::BurnBootFlashX0...21

AlphiPciDevice::BurnUserFlashX0...21

DLL User's Guide for the AlphiDll - 01/22/01 iv

AlphiPciDevice::CancelPendingReadRequests...21

AlphiPciDevice::CancelPendingWriteRequests..22

AlphiPciDevice::Close..22

AlphiPciDevice::Download ..22

AlphiPciDevice::DownloadX0 ...23

AlphiPciDevice::GetDeviceCapabilities ..23

AlphiPciDevice::HookMailboxInterrupt...23

AlphiPciDevice::IsKernelRunning ..24

AlphiPciDevice::IsOpen...25

AlphiPciDevice::Map...25

AlphiPciDevice::Open..25

AlphiPciDevice::Open..26

AlphiPciDevice::ReadAmccNvram ...26

AlphiPciDevice::ReadDword...27

AlphiPciDevice::ReadFifo..27

AlphiPciDevice::ReadFifoDirect ...28

AlphiPciDevice::ReadFifoDirect ...28

AlphiPciDevice::ReadFifoDirect ...29

AlphiPciDevice::ReadMbox...29

AlphiPciDevice::ReadPlxNvram ...30

AlphiPciDevice::Reset..30

AlphiPciDevice::RetrieveSoftwareVersion..31

AlphiPciDevice::SelectPage ...31

AlphiPciDevice::ShareHostMemory ...31

AlphiPciDevice::Start ..32

AlphiPciDevice::StartX0..32

AlphiPciDevice::UnhookMailboxInterrupt...32

AlphiPciDevice::Unmap...33

AlphiPciDevice::UnshareHostMemory ...33

AlphiPciDevice::WriteAmccNvram ..33

AlphiPciDevice::WriteDword..34

AlphiPciDevice::WriteFifo...34

AlphiPciDevice::WriteFifoDirect ..35

AlphiPciDevice::WriteFifoDirect ..35

AlphiPciDevice::WriteFifoDirect ..36

DLL User's Guide for the AlphiDll - 01/22/01 v

AlphiPciDevice::WriteMbox..36

AlphiPciDevice::WriteMbox..37

AlphiPciDevice::WritePlxNvram ..37

AlphiPciDevice::~AlphiPciDevice..38

C Functions and Callbacks..39

(*ucr) ..39

(*UsersIntCompletionRoutine)..39

AllocSharableMemory ...40

BurnBootFlashX0 ..40

BurnUserFlashX0 ..41

CancelPendingReadRequests ..41

CancelPendingWriteRequests ...41

Close ...42

DisplayErrorMessageBox ..42

DisplayErrorToConsole ...43

DisplayInfoMessageBox...43

DisplayInfoToConsole..43

DisplayResultMessageBox ...44

DisplayResultToConsole ..44

DisplayWarningMessageBox ...45

DisplayWarningToConsole..45

Download..45

DownloadX0...46

FreeSharableMemory ..46

GetDeviceCapabilities ..47

GetResultText ..47

HookMailboxInterrupt ..47

IsKernelRunning..48

Map...49

Open ...49

OpenByNumber ...50

OpenByNumberWithoutReset...50

OpenWithoutReset...51

ReadAmccNvram...51

ReadDword ..52

DLL User's Guide for the AlphiDll - 01/22/01 vi

ReadFifo ...52

ReadFifoDirect ...53

ReadFifoDirectByte..53

ReadFifoDirectWord ...54

ReadMbox ..54

ReadMboxByte...55

ReadMboxWord...55

ReadPlxNvram...56

Reset ...56

RetrieveSoftwareVersion ...57

ShareHostMemory ...57

Start ..58

StartX0 ...58

UnhookMailboxInterrupt ..59

Unmap ..59

UnshareHostMemory...59

WriteAmccNvram..60

WriteDword ...60

WriteFifo ..61

WriteFifoDirect..61

WriteFifoDirectByte ..62

WriteFifoDirectWord ..62

WriteMbox ...63

WritePlxNvram..63

IOCTL Messages..65

IOCTL_ALPHIPCI_CANCEL_SPECIFIC_IO ...65

IOCTL_ALPHIPCI_GET_AMCC_MODE..65

IOCTL_ALPHIPCI_GET_DEVICE_CAPABILITIES ...66

IOCTL_ALPHIPCI_GET_MAILBOX_STATUS..66

IOCTL_ALPHIPCI_GET_PHYS_ADDRS_OF_CARDS_RESOURCES66

IOCTL_ALPHIPCI_MAP...67

IOCTL_ALPHIPCI_READ_AMCC_NVRAM ..67

IOCTL_ALPHIPCI_READ_PORT ..68

IOCTL_ALPHIPCI_REPORT_VERSION_IDENTIFIER ...68

IOCTL_ALPHIPCI_SELECT_MAILBOX_FOR_INTERRUPT ...68

DLL User's Guide for the AlphiDll - 01/22/01 vii

IOCTL_ALPHIPCI_SHARE_HOST_MEMORY ...69

IOCTL_ALPHIPCI_UNMAP ...69

IOCTL_ALPHIPCI_WAIT_FOR_INTERRUPT ..70

IOCTL_ALPHIPCI_WRITE_AMCC_NVRAM..70

IOCTL_ALPHIPCI_WRITE_PORT..71

Constants and Typedefs ...72

AllowAmccRegisters constant..72

AllowDualPortRam constant ...72

AllowedAccess_t...72

AllowHostControlRegion constant ..72

AllowIp0All constant..73

AllowIp0IdSpace constant ...73

AllowIp0IoSpace constant ...73

AllowIp0MemorySpace constant...73

AllowIp1All constant..73

AllowIp1IdSpace constant ...74

AllowIp1IoSpace constant ...74

AllowIp1MemorySpace constant...74

AllowIp1Special constant...74

AllowIp2All constant..74

AllowIp2IdSpace constant ...75

AllowIp2IoSpace constant ...75

AllowIp2MemorySpace constant...75

AllowIp2Special constant...75

AllowIp3All constant..75

AllowIp3IdSpace constant ...76

AllowIp3IoSpace constant ...76

AllowIp3MemorySpace constant...76

AllowIp3Special constant...76

AllowPlxRegisters constant..76

AllowSummitRegisters constant..77

szDriverVersionIdentifier[] constant...77

Structures and Enumerations ..78

AMCC Structure..78

DLL User's Guide for the AlphiDll - 01/22/01 viii

AmccNvramImage Structure...79

CardResource Structure ..81

DeviceCaps Structure ..81

DriverVersionIdentifier Structure...82

eInterfaceType ...82

eIntType ...83

eIoType...84

eProcessorType ..84

eTypeOfAccess ...85

InterruptCause Structure ..86

IntType Structure ..86

IoType Structure..87

LinearAddress Structure ...87

MailboxStatus Structure..87

PhysAddrsOfCardResources Structure ..87

PLX_REGS Structure..88

PlxNvramImage Structure...91

PortType Structure ..95

DLL User's Guide for the AlphiDll - 01/22/01 1

Description
This document describes a Windows NT device driver and a 32 bit DLL which runs
under Windows NT allowing for high level control of all of ALPHI Technology's PCI
cards.

This package is intended to provide the base functionality which is common to all of
our PCI cards. Specific functionality for certain cards is provided by other DLLs which
rely upon this package.

This package allows the following tasks to be performed.

Finding out what cards are present and their capabilities.
Downloading DSP code to RAM, executing, and stopping under host control.
Communicating with the DSP via mailbox registers, doorbells, and FIFO registers.
Supporting memory mapped access to card resources.
Downloading DSP code and burning into FLASH for standalone BOOT.
Interrupting the Host processor.
Uniquely identifying board resources when identical boards exist in a host.
Utilizing PCI Bus Mastering to transfer data between the DSP and the host.

The API to this device driver and the DLL is described in this document, as well as in a
Windows Helpfile in the Document directory.

The documentation includes the following descriptions.

The source files required to build the DLL portion of this board support package. Also,
any global variables are listed here. Full source is provided for these files. (No source is
provided for the device driver.)

The return HRESULTs from this DLL and any other DLLs, and the associated text
messges.

The C++ classes, member functions, and member data implementing the functionality
of this package. These classes are exported from the DLL for use by applications
written in C++.

C functions implementing the functionality of this package. Many of these functions
are exported for use by applications written in C or other languages.

The primary means of communication between the DLL or user's application and the
device driver.

Implementation details of this package.

Non class type data structures. Also used to pass data during IOCTL calls to the driver.

Device Names
User applications which wish to utilize the resources of ALPHI Technology's PCI cards
tend to fall into two categories. There are applications which know the exact types of
cards required in the host system in order to operate correctly, and those which do not
really care about what type of card is present or the quantity, or will enumerate all the
cards in a host system.

Modules

HRESULTs

Classes and
Members

Functions

IOCTLs

Constants and
Typedefs
Structures and
Enumerations

DLL User's Guide for the AlphiDll - 01/22/01 2

In order to facilitate both types of applications, the ALPHIPCI (and ALPHIPLX)
device driver publishes two different names for each card, a generic name and a
specific name. Both names are followed by a decimal digit which will uniquely identify
the card. All the functionality of the driver for a particular card type is available
regardless of which name was used to open the device.

The generic name is of the form ALPHIPCIn (or ALPHIPLXn) where n is a digit
starting at 0. Every card handled by this driver will have a name of this form. An
application wishing to enumerate the resources on the host, or interested in performing
a task which is common to many different cards, (such as downloading and running
DSP code, or burning a new DSP code into FLASH) can use the generic name in the
Win32 API call to CreateFile. By opening each device in sequence (0, 1, 2...) until one
fails for not existing, the application can enumerate every card in the host system. By
using the IOCTL IOCTL_ALPHIPCI_GET_DEVICE_CAPABILITIES, the
application can get the equivalent specific name (or true name) of the card, as well as
the resources available.

This is in effect, exactly what the AlphiPciDevice::Open by number call does. All the
known device drivers are opened, one at a time, to create a list of the true names of the
cards present. Then this list is accessed to actually perform the open by number.

The specific name or true name is of a similiar form and depends upon the device of
interest. For example, the CPCI-IPC card will have a specific name starting with
CPCI-IPC0. This allows an application expecting a specific type of board to find it
quickly.

Direct Access by DSP (PLX)
The PLX chip can be configured to directly access HOST memory and other PCI/CPCI
cards by correctly programming the chip's registers. Several C routines are present in
the alphi_io library (PLX Version) to accomplish this easily. For some cases, however,
the support of the HOST program is needed, and some functions exist in AlphiDll to
make this possible.

There are two different reasons to have the DSP directly accesses PCI space. The first
is to access a separate PCI/CPCI card, and the second is to make use of the HOST
memory, shared with the HOST processor. Normally, no help by the HOST program is
needed to support accessing separate PCI/CPCI cards.

For the case where the DSP is accessing shared HOST memory, several functions exist
to help with allocating a region of memory suitable for sharing with the DSP, and then
making it accessible to the DSP.

AllocSharableMemory will allocate a buffer which is aligned to a 4k page boundary.
This is important so that the DSP doesn't have to constantly deal with an offset to the
start of the shared buffer. All the alphi_io functions related to the shared buffer rely
upon expecting page jumps at exact 4k pages.

FreeSharableMemory frees the buffer when the program is done.

AlphiPciDevice::ShareHostMemory actually makes the memory sharable with the
DSP. The device driver will lock the pages into physical memory (so that they can't be
swapped to disk), and set up a mapping table of physical addresses for the use of the
DSP. Although to the HOST program the memory appears contiguous, in fact, the

DLL User's Guide for the AlphiDll - 01/22/01 3

physical pages are scattered through the physical memory space. For C programs,
ShareHostMemory accomplishes the same thing.

AlphiPciDevice::UnshareHostMemory cancels the mapping. Again, use
UnshareHostMemory for C programs.

DMA (AMCC)
The AMCC chip has two DMA channels, one in each direction, for transferring data
between the card and the HOST. The DSP sees these DMA channels indirectly through
the 8 DWORD FIFO present in the AMCC chip.

The device driver is programmed to emulate a scatter/gather type bus master DMA
model. After transferring each page, the device driver receives an interrupt and sets up
the transfer to the next page. Although it sounds as though this might take a significant
amount of HOST processing time, the driver is only copying 3 DWORDS from a table
to the AMCC to start the next page.

Making use of the DMA engine is very simple.

The functions AlphiPciDevice::ReadFifo and AlphiPciDevice::WriteFifo set up a
transfer to or from the FIFO. The user provides a completion function and parameter
which is called when the DMA is complete. Multiple transfers can be queued up to
ensure continuous transfer. AlphiPciDevice::CancelPendingReadRequests and
AlphiPciDevice::CancelPendingWriteRequests unqueues any pending requests.

The functions ReadFifo and WriteFifo set up a transfer to or from the FIFO. The user
provides a completion function and parameter which is called when the DMA is
complete. Multiple transfers can be queued up to ensure continuous transfer.
CancelPendingReadRequests and CancelPendingWriteRequests unqueues any
pending requests.

DMA (PLX)
The PLX chip has two DMA channels. The device driver and DSP library utilize one in
each direction, for transferring data between the card and the HOST. The DSP usually
programs these DMA channels directly through the PLX registers.

The device driver is programmed to set up tables of physical addresses and sizes in
DSP memory that describe each physical page of the buffer. The DSP is interrupted via
a known doorbell, and the DSP then starts and throttles any transfer, a page at a time.
When the DMA is complete, the DSP issues a known doorbell to the device driver. The
driver then can set up the next transfer, and complete the previous one.

Making use of the DMA engine is very simple.

The functions AlphiPciDevice::ReadFifo and AlphiPciDevice::WriteFifo set up a
transfer to or from the FIFO. The user provides a completion function and parameter
which is called when the DMA is complete. Multiple transfers can be queued up to
ensure continuous transfer. AlphiPciDevice::CancelPendingReadRequests and
AlphiPciDevice::CancelPendingWriteRequests unqueues any pending requests.

The functions ReadFifo and WriteFifo set up a transfer to or from the FIFO. The user
provides a completion function and parameter which is called when the DMA is
complete. Multiple transfers can be queued up to ensure continuous transfer.

Access in C++

Access in C
and other
languages

Access in C++

Access in C
and other
languages

DLL User's Guide for the AlphiDll - 01/22/01 4

CancelPendingReadRequests and CancelPendingWriteRequests unqueues any
pending requests.

Doorbells (PLX)
The PLX has two 32 bit doorbell registers for communication between the HOST and
the DSP. Certain bits are already used by the DSP library, the device driver, and this
DLL.

Bit 31 of PLX_REGS.l2pdbell is used to indicate that the hardware generated an
interrupt.

Bits 30 - 9 are available for user applications.

Bit 8 is used for DMA communication between the driver and the DSP library.

Bits 7 - 4 indicate that the associated outgoing mailbox is empty. Bit 4 is for mailbox 0.

Bits 3 - 0 indicate that the associated incoming mailbox is full. Bit 0 is for mailbox 0.

Bits 31 - 9 of PLX_REGS.p2ldbell are available for user applications.

Bit 8 is used for DMA communication between the driver and the DSP library.

Bits 7 - 4 tell the DSP that the associated incoming mailbox is empty. Bit 4 is for
mailbox 0.

Bits 3 - 0 tell the DSP that the associated outgoing mailbox is full. Bit 0 is for mailbox
0.

Driver Installation
The Windows NT device driver can be set up in the host system by two means. First, a
regular installation from the board support disks will set the driver up correctly.

Second, for customers creating installation disks for their products, if the
ALPHIPCI.SYS (or ALPHIPLX.SYS) driver is copied to the
WINNT/SYSTEM32/DRIVERS directory, and if the registry is set up, the system will
see the device driver.

Setting up the system registry is easily accomplished by using the REGINI.EXE
program supplied and the ALPHIPCI.INI (or ALPHIPLX.INI) file. By typing

REGINI ALPHIPCI.INI

the registry will be configured correctly. Reboot in order to complete the installation.
Alternatively, the customer's installation program can set the registry to match the
contents of the INI file.

Driver Load
The driver by default is set to load automatically at system boot. This can be easily
changed by making use of the Settings / Control Panel / Devices control. By setting the
ALPHIPCI (or ALPHIPLX) device, it can be started automatically at boot time, started
manually, or disabled.

DLL User's Guide for the AlphiDll - 01/22/01 5

The device can be started manually via the same Control Panel control or from a
command prompt, by typing (for instance)

net start alphipci

and stopped with

net stop alphipci

Confirmation of a successful load, or alternatively, the cause of a failure to load will be
made in the Programs / Administration Tools / Event Viewer. The devices found, and
their true names, will be reported for a successful load.

FIFOs
On an AMCC based card, there is an 8 DWORD FIFO in each direction between the
host and the processor on cards which have them. This FIFO can be used for
communication between the processors in a manner similiar to that of the mailbox
registers. The advantage is increased decoupling between the two processors.

On the AMCC, the FIFO will be utilized as part of the bus mastering packet transfer to
and from the card.

The AMCC 5933 chip does not allow interrupts to be generated as a result of FIFO
activity.

There is no corresponding FIFO on a PLX based design. The PLX can, however,
directly write to the HOST memory, both by DMA and by direct access.

Function Returns (HRESULTs)
The DLLs which make up the Board Support Package return a success or error code
depending on the results of the function. These HRESULT values are compatible with
the error codes returned by WIN32 functions and COM/OLE.

One advantage of using these error codes is that there is a textual description of the
meaning of the error code available in the DLL AlphiErrorCode, along with some
useful functions to display the text to the console or to a MessageBox. See
DisplayErrorCode.h for more details.

WIN32 provides two macros which are helpful in error checking. It is a good idea to
use these macros, since the actual error codes which are returned may be added to in
the future.

FAILED() will be true if the HRESULT is an error.

SUCCEEDED() will be true if the HRESULT is anything but an error.

Results can be classified into 4 catagories, and the HRESULT names reflect these
catagories.

ALPHI_SEVERITY_SUCCESS:
ALPHI_S_...
 Operation succeeded with the specified result.

ALPHI_SEVERITY_INFORMATIONAL:
ALPHI_I_...

DLL User's Guide for the AlphiDll - 01/22/01 6

 Operation succeeded, but there is some information also. Message boxes will be
displayed with the blue "i" icon.

ALPHI_SEVERITY_WARNING:
ALPHI_W_...
 Operation succeeded, but there is something wrong. Message boxes will be displayed
with the yellow "!" icon.

ALPHI_SEVERITY_ERROR:
ALPHI_E_...
 Operation failed. Message boxes will be displayed with the red stop sign icon.

Note for users of earlier versions of AlphiDll. All of the earlier S_OK and E_FAIL
HRESULTs have been replaced with these more meaningful returns. If you were
previously making use of the FAILED() and SUCCEEDED() macros, your code should
not need any changes.

All the MessageBoxes which poped up as a result of failures in functions have been
removed. The user now should present an appropriate message using the
AlphiErrorCode DLL or other means.

Host Interrupts (AMCC)
It is possible to have the card interrupt the host processor as a result various causes.

An interrupt can be generated when a single mailbox is written to by the processor on
the card or by the hardware as on a non intelligent board like the CPCI-SIP. Of less
use, an additional interrupt can be generated when the processor on the card reads a
mailbox.

The function AlphiPciDevice::HookMailboxInterrupt allows the user to specify the
mailboxes of interest, and to provide the ALPHIDLL the user's function to call when an
interrupt occurs. AlphiPciDevice::UnhookMailboxInterrupt turns off the interrupt.

The function HookMailboxInterrupt allows the user to specify the mailboxes of
interest, and to provide the ALPHIDLL the user's function to call when an interrupt
occurs. UnhookMailboxInterrupt turns off the interrupt.

There are several IOCTL calls which provide support for host interrupts.

IOCTL_ALPHIPCI_WAIT_FOR_INTERRUPT Blocks waiting for an interrupt to
occur. Returns the value of the AMCC.INTCSR at the time of the interrupt. This tells
the application whether the mailbox read or the mailbox write caused the interrupt. If
an interrupt has already occured before the wait for it, this IOCTL will immediately
return that status.

IOCTL_ALPHIPCI_SELECT_MAILBOX_FOR_INTERRUPT Enables and
disables the mailbox interrupts. It is better to use this IOCTL instead of directly
accessing the AMCC.INTCSR register since the driver is reading and writing this
register too. This IOCTL serializes access to the register.

IOCTL_ALPHIPCI_CANCEL_SPECIFIC_IO Allows the cancellation of an
outstanding IOCTL_ALPHIPCI_WAIT_FOR_INTERRUPT by any thread.

The interrupt latentcy on a Pentium 166 INTEL motherboard has been profiled at less
than 400 uS with a typical latency much lower. This required that the task priority class
be elevated to realtime. Otherwise, other events and tasks running on NT will cause the

Developer
Notes

Access in C++

Access in C
and other
languages

Direct access
to the driver

Performance
issues

DLL User's Guide for the AlphiDll - 01/22/01 7

thread calling the user's completion routine to not run immediately after the NT driver
unblocks it.

It is important to note that the completion routine must return before the thread can call
it again. No interrupts will be lost as a result of taking too long, but the latency will
obviously be high.

Host Interrupts (PLX)
It is possible to have the card interrupt the host processor as a result various causes.

An interrupt can be generated when a mailbox is written or read by the DSP, a
hardware event has occured, or a bit in the doorbell register has been set. Certain
doorbell bits are reserved for use by the device driver, alphi_dll, and alphi_io for
maintaining mailbox states and passing DMA information.

The function AlphiPciDevice::HookMailboxInterrupt allows the user to causes of
interest, and to provide the ALPHIDLL the user's function to call when an interrupt
occurs. AlphiPciDevice::UnhookMailboxInterrupt turns off the interrupt.

The function HookMailboxInterrupt allows the user to specify the causes of interest,
and to provide the ALPHIDLL the user's function to call when an interrupt occurs.
UnhookMailboxInterrupt turns off the interrupt.

There are several IOCTL calls which provide support for host interrupts.

IOCTL_ALPHIPCI_WAIT_FOR_INTERRUPT Blocks waiting for an interrupt to
occur. Returns the value of the PLX.intcsr at the time of the interrupt. This allows the
application to determine the cause of the interrupt. If an interrupt has already occured
before the wait for it, this IOCTL will immediately return that status.

IOCTL_ALPHIPCI_SELECT_MAILBOX_FOR_INTERRUPT Enables and
disables the interrupts. Please note that the driver always has interrupts turned on, and
this call tells the driver which causes are to be passed down.

IOCTL_ALPHIPCI_CANCEL_SPECIFIC_IO Allows the cancellation of an
outstanding IOCTL_ALPHIPCI_WAIT_FOR_INTERRUPT by any thread.

It is important to note that the completion routine must return before the thread can call
it again. No interrupts will be lost as a result of taking too long, but the latency will
obviously be high.

Language Issues
The exports from this DLL are in a form which matches those of the WIN 32 API
DLLs under Windows NT. Therefore, the DLLs should be callable from any 32 bit
programming language available under NT. However, a header file may have to be
created for languages other than Microsoft Visual C/C++.

This DLL was compiled under Microsoft Visual C/C++ Version 5.0.

Linking to this DLL
The import library is named AlphiDll.lib and is located in the Library directory. If any
error reporting calls are made, then AlphiErrorCode.lib should be included too. The

Access in C++

Access in C
and other
languages

Direct access
to the driver

DLL User's Guide for the AlphiDll - 01/22/01 8

customer should be add this file to the list of files to link with. This should resolve any
function references.

If AlphiDll.dll (and possibly AlphiErrorCode.dll) is placed in the directory with the end
application, or in the WINNT\SYSTEM32 directory, the system will find them when
the customer's application is started. Alternatively, the directory containing the DLLs
can be placed on the PATH.

Mailboxes
Mailboxes provide a primary means of transfering information between the host and
the processor on the card.

On an AMCC based design, there are three 32 bit mailbox registers available for use.
The fourth mailbox is only useable as 24 bits because the high byte is used as a
hardware register in the configuration used. The high byte reflects the current hardware
state in certain cards, such as the CPCI-SIP where it indicates which IP is generating an
interrupt.

It is possible to generate a host interrupt when a mailbox is accessed. An interrupt can
be generated when a single mailbox is written to by the processor on the card or by the
hardware as on the CPCI-SIP. Of less use, an additional interrupt can be generated
when the processor on the card reads a mailbox. See Host Interrupts for more details.

On a PLX based design, there are eight mailboxes total, without any empty or full
flags. This DLL and the alphi_io DSP library work together to allow 4 mailboxes in
each direction, and they use certain doorbell bits to maintain empty/full flags. The
doorbell registers will generate interrupts to the HOST device driver, which can be
hooked by the user.

Maps
Certain PCI cards make use of additional resources which can be directly accessed
from the host processor. Examples include the IPs installed in a CPCI-SIP card, and the
Dual Port Ram of the PCI4PACK. Additionally, every card makes use of either the
AMCC register set or the PLX register set, which is also directly accessible from the
host processor. ALPHI Technology has specified that these resources be memory
mapped, in order that they can be directly accessed from user tasks. If these had been
I/O mapped, they would have required constant calls into the device driver to read and
write ports, and the user application would pay a performance penalty.

The user application can get a pointer to these resources by using the
AlphiPciDevice::Map function. This asks that the driver create a mapping in the page
table for the application task to directly access the physical card. The resources
available are listed in eTypeOfAccess.

When the task is finished with the mapping, it can be released via
AlphiPciDevice::Unmap.

DLL User's Guide for the AlphiDll - 01/22/01 9

Software Modules
The source files required to build the DLL portion of this board support package. Also,
any global variables are listed here. Full source is provided for these files. (No source is
provided for the device driver.)

Module AlphiDll.cpp
Filename: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Function definitions for the custom DLL to interface to all ALPHIPCI devices.

const char *gszFriendlyName = "ALPHI PCI Device Interface DLL";
Name of the DLL for presentation in message boxes.

Module AlphiDll.h
Filename: D:/ALPHIPCI/INCLUDE/ALPHIDLL.H

Function declarations for the custom DLL to interface to all ALPHIPCI devices.

Module Amcc.cpp
Filename: D:/ALPHIPCI/ALPHIDLL/AMCC.CPP

Specific functionality for Amcc 5933 chip.

Version
Reference to the returned version identifier.

Module Amcc.h
Filename: D:/ALPHIPCI/ALPHIDLL/AMCC.H

Specific functionality for Amcc 5933 chip.

Module AmccPort.cpp
Filename: D:/ALPHIPCI/ALPHIDLL/AMCCPORT.CPP

Specific functionality for Amcc 5933 chip in I/O mode.

Description

Global
Variables

Description

Description

Parameters

Description

Description

DLL User's Guide for the AlphiDll - 01/22/01 10

Version
Reference to the returned version identifier.

Module AmccPort.h
Filename: D:/ALPHIPCI/ALPHIDLL/AMCCPORT.H

Specific functionality for Amcc 5933 chip in I/O mode.

Module Base.cpp
Filename: D:/ALPHIPCI/ALPHIDLL/BASE.CPP

Base functionality for PCI Interface chips.

Module Base.h
Filename: D:/ALPHIPCI/ALPHIDLL/BASE.H

Base functionality for PCI Interface chips.

Module ddalphip.h
Filename: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

User interface to the ALPHIPCI and ALPHIPLX Windows NT device driver.

Module DisplayErrorCode.cpp
Filename: D:/ALPHIPCI/HOST
EXAMPLES/ALPHIERRORCODE/DISPLAYERRORCODE.CPP

Functions to simplify outputting textual meanings of HRESULTs.

Module DisplayErrorCode.h
Filename: D:/ALPHIPCI/INCLUDE/DISPLAYERRORCODE.H

Parameters

Description

Description

Description

Description

Description

DLL User's Guide for the AlphiDll - 01/22/01 11

Functions to simplify outputting textual meanings of HRESULTs.

Module ErrorCode.h
Filename: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

HRESULTs returned by all DLL functions and their associated textual messages.

Module Plx.cpp
Filename: D:/ALPHIPCI/ALPHIDLL/PLX.CPP

Specific functionality for PLX 9080 chip.

Page
Select which IP space is mapped into unified space.

Module Plx.h
Filename: D:/ALPHIPCI/ALPHIDLL/PLX.H

Specific functionality for Plx 9080 chip.

Description

Description

Description

Parameters

Description

DLL User's Guide for the AlphiDll - 01/22/01 12

HRESULTs and associated messages
The return HRESULTs from this DLL and any other DLLs, and the associated text
messges.

ALPHI_E_BAD_CARD_CONFIGURATION
This function requires the correct PCI configuration for the device in order to succeed.
Correct the NVRAM configuration for the device.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_BAD_FILENAME
The function failed because the specified file could not be opened.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_CANT_GET_DEVICE_CAPABILITIES
Open is unable to get the device capabilities from the device driver.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_CANT_SUPPORT_THIS_DEVICE
This software component does not support this type of device.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_DEVICE_FAILED_RESET
The DSP has failed to respond as expected to a RESET. The DSP is supposed to restart
the BootRom. If using an emulator, ensure that the DSP is free to run.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

Message Text:

Message Text:

Message Text:

Message Text:

Message Text:

DLL User's Guide for the AlphiDll - 01/22/01 13

ALPHI_E_DEVICE_NOT_OPEN
Operation failed because this object is not connected to an open device.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_DSP_FAILED_ACK_COMMAND_PACKET
The DSP failed to acknowledge a command packet.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_DSP_FAILED_COMMAND_PACKET
The DSP failed to perform the command packet.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_DSP_FAILED_READ_COMMAND_PACKET
The DSP failed to read a mailbox while sending a command packet.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_DSP_NOT_RESPONDING
The DSP is not currently running the BootRom, or has failed to respond as expected.
Perhaps a downloaded program has overwritten the BootRom. Check the memory map
of the downloaded DSP code.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_DSP_NOT_RUNNING_KERNEL
The DSP is not currently running the BootRom, or has failed to respond as expected. If
using an emulator, ensure that the DSP is free to run.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

Message Text:

Message Text:

Message Text:

Message Text:

Message Text:

Message Text:

DLL User's Guide for the AlphiDll - 01/22/01 14

ALPHI_E_ERROR_PARSING_FILE
The function ran into an unexpected error reading or parsing the file.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_FAILED_TO_MAP_REGION
A necessary region to control the card could not be mapped into the address space.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_FAILED_TO_OPEN_FILE_FOR_DOWNLOAD
The appropriate DSP code file could not be opened for download to the card.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_FAILED_TO_START_DOWNLOAD
The DSP failed to start the downloaded DSP code.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_FUNCTION_NOT_APPLICABLE
This function is not applicable to this device's capabilities.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_HOOK_ALREADY_SET
Only one routine can handle interrupts. Unhook the previous one.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

Message Text:

Message Text:

Message Text:

Message Text:

Message Text:

Message Text:

DLL User's Guide for the AlphiDll - 01/22/01 15

ALPHI_E_MAP_NOT_APPLICABLE
The requested region is not applicable to this device's capabilities.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_NO_DEVICE_BY_THIS_NAME
Open failed because no device by this name or number was found.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_NO_DOWNLOAD
No DSP code has been downloaded to this card.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_OPERATION_TIMED_OUT
The operation did not complete within the time limit.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_PARM_OUT_OF_RANGE
The function failed because a parameter was out of range.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_E_UNEXPECTED_CONDITION
An unexpected condition has occurred inside the support library. Contact the factory.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

Message Text:

Message Text:

Message Text:

Message Text:

Message Text:

Message Text:

DLL User's Guide for the AlphiDll - 01/22/01 16

ALPHI_E_WRONG_PROCESSOR
This DSP code is not compiled for the type of DSP present on the device.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_I_FUNCTION_NOT_NEEDED
The function was not performed because it was in the state already.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_I_OPEN_LIMITED_FUNCTIONALITY
Device was opened for limited functionality.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_S_DSP_ACK
The DSP acknowledges that the operation was successful.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_S_OK
Operation was successful.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

ALPHI_W_DEVICE_FAILED_RESET
The DSP has failed to respond as expected to a RESET. If using an emulator, ensure
that the DSP is free to run. Functionality will be limited for this device.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

Message Text:

Message Text:

Message Text:

Message Text:

Message Text:

Message Text:

DLL User's Guide for the AlphiDll - 01/22/01 17

ALPHI_W_OPEN_FAILED_TO_MAP_PCI_REGISTERS
This device has an incorrect PCI configuration. Operations on this card will be limited
until the NVRAM configuration for the device is corrected.

Defined in: D:/ALPHIPCI/INCLUDE/ERRORCODE.H

Message Text:

DLL User's Guide for the AlphiDll - 01/22/01 18

Classes and Members
The C++ classes, member functions, and member data implementing the functionality
of this package. These classes are exported from the DLL for use by applications
written in C++.

AlphiPciDevice Class
class AlphiPciDevice

This class represents one card in the host system. It provides the functionality to
communicate with all of the resources available on the card.

Defined in: D:/ALPHIPCI/INCLUDE/ALPHIDLL.H

This class is exported from the DLL for direct use by Microsoft compatible compilers.
I do not believe that Microsoft name mangling will work for Borland or other
compilers.

Public Members

__stdcall AlphiPciDevice()
Constructor.

__stdcall ~AlphiPciDevice()
Destructor.

HRESULT __stdcall Open(const char *pszLinkName, bool bDoNotReset = false)
Open the specified device by name.

HRESULT __stdcall Open(unsigned BoardNumber, bool bDoNotReset = false)
Open the specified device by consecutive device number.

HRESULT __stdcall Close()
Close the specified device and cleanup any resources.

bool __stdcall IsOpen()
Ensure that this class is opened and representing a valid card.

Public Members for control of DSP

HRESULT __stdcall Reset()
Reset the DSP and/or any IPs. If a DSP, ensure successful communication with
kernel.

HRESULT __stdcall IsKernelRunning()
Ensure that the DSP can respond to requests from this API.

HRESULT __stdcall RetrieveSoftwareVersion(DWORD &Version)
Retrieve version of the bootloader (or application if supported).

HRESULT __stdcall Download(const char *szFilename)
Download the COFF file to the DSP.

HRESULT __stdcall Start()
Begin execution of the downloaded DSP code.

HRESULT __stdcall DownloadX0(const char *szFilename)
Download the Tektronix X0 file to the buffer on the card.

Comments

Class Members

DLL User's Guide for the AlphiDll - 01/22/01 19

HRESULT __stdcall StartX0()
Begin execution of the previously downloaded Tektronix file.

HRESULT __stdcall BurnBootFlashX0()
Burn the boot area of the FLASH with the previously downloaded Tektronix file.

HRESULT __stdcall BurnUserFlashX0()
Burn the user area of the FLASH with the previously downloaded Tektronix file.

Public Members to directly access card resources

HRESULT __stdcall Map(eTypeOfAccess TypeOfAccess, LinearAddress
&Address)

Retrieve a pointer to the physical card resource.

HRESULT __stdcall Unmap(LinearAddress &Address)
Unmap pointer to physical resource.

HRESULT __stdcall SelectPage(DWORD Page)
Select page of IP memory space mapped to region.

Public Members to read and write to DSP memory

HRESULT __stdcall WriteDword(DWORD DspAddress, DWORD Value)
Ask the DSP to write to the specified DSP address.

HRESULT __stdcall ReadDword(DWORD DspAddress, DWORD *pValue)
Ask the DSP to read from the specified DSP address.

Public Members to directly read and write to the FIFOs

HRESULT __stdcall ReadFifoDirect(DWORD *pBuffer, DWORD NumDWords
)

Read directly from the FIFO port.

HRESULT __stdcall ReadFifoDirect(WORD *pBuffer, DWORD NumDWords)
Read directly from the FIFO port.

HRESULT __stdcall ReadFifoDirect(BYTE *pBuffer, DWORD NumDWords)
Read directly from the FIFO port.

HRESULT __stdcall WriteFifoDirect(DWORD *pBuffer, DWORD NumDWords
)

Write directly to the FIFO port.

HRESULT __stdcall WriteFifoDirect(WORD *pBuffer, DWORD NumDWords)
Write directly to the FIFO port.

HRESULT __stdcall WriteFifoDirect(BYTE *pBuffer, DWORD NumDWords)
Write directly to the FIFO port.

HRESULT __stdcall WriteFifo(DWORD *pBuffer, DWORD NumDWords, ucr
CompletionFunction, PVOID UserData)

Write to the FIFO port using Bus Master DMA.

HRESULT __stdcall ReadFifo(DWORD *pBuffer, DWORD NumDWords, ucr
CompletionFunction, PVOID UserData)

Read from the FIFO port using Bus Master DMA.

Public Members to directly read and write to the mailboxes

HRESULT __stdcall WriteMbox(WORD WhichMailbox, DWORD dwData)
Write a DWORD to the DSP.

DLL User's Guide for the AlphiDll - 01/22/01 20

HRESULT __stdcall WriteMbox(WORD WhichMailbox, DWORD dwData, bool
fWait)

Write a DWORD to the DSP.

HRESULT __stdcall ReadMbox(WORD WhichMailbox, bool fWait, DWORD
*pData = 0)

Read a DWORD from the DSP.

HRESULT __stdcall ReadMbox(WORD WhichMailbox, bool fWait, WORD
*pData)

Read a DWORD from the DSP and cast to WORD.

HRESULT __stdcall ReadMbox(WORD WhichMailbox, bool fWait, BYTE
*pData)

Read a DWORD from the DSP and cast to BYTE.

Public Members to support host interrupts

HRESULT __stdcall HookMailboxInterrupt(eIntType IntType,
UsersIntCompletionRoutine uicr, void *UsersInterruptData)

Install a hook to call uicr as a result of mailbox activity.

HRESULT __stdcall UnhookMailboxInterrupt()
Remove a hook installed with HookMailboxInterrupt.

Public miscellaneous

const DeviceCaps & __stdcall GetDeviceCapabilities()
Get reference to device capabilities.

HRESULT __stdcall CancelPendingReadRequests()
Cancel any pending read requests.

HRESULT __stdcall CancelPendingWriteRequests()
Cancel any pending write requests.

HRESULT __stdcall ReadAmccNvram(AmccNvramImage &Image)
Read the NVRAM image stored in the device.

HRESULT __stdcall WriteAmccNvram(AmccNvramImage &Image)
Write the NVRAM image to the device.

HRESULT __stdcall ReadPlxNvram(PlxNvramImage &Image)
Read the NVRAM image stored in the device.

HRESULT __stdcall WritePlxNvram(PlxNvramImage &Image)
Write the NVRAM image to the device.

HRESULT ShareHostMemory(void *pSharedMemory, DWORD Size)
Share the designated buffer with the DSP.

HRESULT UnshareHostMemory()
Disable sharing the buffer with the DSP.

Private Members

BaseAlphiDevice * pDevice
Virtual base class of the class which implements the actual functions.

DeviceCaps m_DeviceCaps
Device capabilities reported by driver.

DLL User's Guide for the AlphiDll - 01/22/01 21

AlphiPciDevice::AlphiPciDevice
AlphiPciDevice::AlphiPciDevice()

Constructor.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Initializes member variables to a known state.

Should initialize m_DeviceCaps.

AlphiPciDevice::BurnBootFlashX0
HRESULT AlphiPciDevice::BurnBootFlashX0()

Burn the boot area of the FLASH with the previously downloaded Tektronix file.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

DownloadX0

AlphiPciDevice::BurnUserFlashX0
HRESULT AlphiPciDevice::BurnUserFlashX0()

Burn the user area of the FLASH with the previously downloaded Tektronix file.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

DownloadX0

AlphiPciDevice::CancelPendingReadRequests
HRESULT AlphiPciDevice::CancelPendingReadRequests()

Cancel any pending read requests.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Comments

Developer
Notes

Return Codes

See Also

Return Codes

See Also

DLL User's Guide for the AlphiDll - 01/22/01 22

Cancels any outstanding read packets and cleans up.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

ReadFifo

AlphiPciDevice::CancelPendingWriteRequests
HRESULT AlphiPciDevice::CancelPendingWriteRequests()

Cancel any pending write requests.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Cancels any outstanding read packets and cleans up. Resets the PCI to DSP FIFO on
AMCC.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

WriteFifo

AlphiPciDevice::Close
HRESULT AlphiPciDevice::Close()

Close the specified device and cleanup any resources.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Unhook interrupt, delete the PCI register mappings, close the handle, and reinitialize
the member variables.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

Should initialize m_DeviceCaps.

AlphiPciDevice::Download
HRESULT AlphiPciDevice::Download(

const char * szFilename)

Download the COFF file to the DSP.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Comments

Return Codes

See Also

Comments

Return Codes

See Also

Comments

Return Codes

Developer
Notes

DLL User's Guide for the AlphiDll - 01/22/01 23

szFilename
NULL terminated filename.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

This function has been fixed to support all three COFF versions defined (-v0, -v1, and -
v2).

AlphiPciDevice::DownloadX0
HRESULT AlphiPciDevice::DownloadX0(

const char * szFilename)

Download the Tektronix X0 file to the buffer on the card.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

szFilename
NULL terminated filename.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

StartX0 BurnBootFlashX0 BurnUserFlashX0

AlphiPciDevice::GetDeviceCapabilities
const DeviceCaps & __stdcall AlphiPciDevice::GetDeviceCapabilities()

Get a reference to the Device Capabilities.

Defined in: D:/ALPHIPCI/INCLUDE/ALPHIDLL.H

Constant reference to the DeviceCaps stored during the Open.

DeviceCaps

AlphiPciDevice::HookMailboxInterrupt
HRESULT AlphiPciDevice::HookMailboxInterrupt(

eIntType IntType,
UsersIntCompletionRoutine UsersInterruptRoutine,
void * UsersInterruptData)

Install a hook to call UsersInterruptRoutine as a result of a valid interrupt cause.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Parameters

Return Codes

Developer
Notes

Parameters

Return Codes

See Also

Return Value

See Also

DLL User's Guide for the AlphiDll - 01/22/01 24

IntType
Which cause(s) to look at. See eIntType for AMCC class devices. PLX device
causes have not been defined in the header file as yet.

UsersInterruptRoutine
Pointer to the user's completion routine. See (*UsersIntCompletionRoutine).

UsersInterruptData
User data passed to the completion function.

On the AMCC, an interrupt can be generated from up to two causes at a time. One
interrupt cause is the DSP writing to a particular mailbox, or on certain cards, a
hardware event could generate an interrupt. The other cause is generated by the DSP
reading from a particular mailbox.

On the PLX, an interrupt can be generated on any of the following: DSP read of a
mailbox, DSP write to a mailbox, a hardware event, or a doorbell write by the DSP.

This function operates by creating a separate thread running at the highest priority. This
thread blocks in the device driver until the interrupt event has occurred. When the
thread is freed, it calls UsersInterruptRoutine with the parameter UsersInterruptData
and the state of the interrupts at the time of calling. When the user function completes,
the thread then blocks again in the device driver. It is impossible not to be called from
an interrupt cause, but it is possible to have several interrupt events combined into one
call to the user function, if they occur fast enough.

This function really deserves a better name.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

UnhookMailboxInterrupt (*UsersIntCompletionRoutine)

AlphiPciDevice::IsKernelRunning
HRESULT AlphiPciDevice::IsKernelRunning()

Ensure that the DSP is in HOST control mode and can respond to requests from this
API.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Exchange tokens with the kernel to ensure that it is running.

Token exchange is accomplished via a request for GET_ID which incidentally is the
old method for identifying cards in the host.

ALPHI_S_DSP_ACK Operation was successful.

Otherwise Operation failed. See HRESULTs.

Parameters

Comments

Developer
Notes
Return Codes

See Also

Comments

Return Codes

DLL User's Guide for the AlphiDll - 01/22/01 25

AlphiPciDevice::IsOpen
bool __stdcall AlphiPciDevice::IsOpen()

Ensure that this class is opened and representing a valid card.

Defined in: D:/ALPHIPCI/INCLUDE/ALPHIDLL.H

Returns true if the card is opened, false otherwise.

AlphiPciDevice::Map
HRESULT AlphiPciDevice::Map(

eTypeOfAccess TypeOfAccess,
LinearAddress & Address)

Retrieve a pointer to the physical card resource.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

TypeOfAccess
Describes the type of access requested. See eTypeOfAccess.

Address
Linear address directly accessible by pointer dereference. See LinearAddress.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

IOCTL_ALPHIPCI_MAP

AlphiPciDevice::Open
HRESULT AlphiPciDevice::Open(

const char * pszLinkName,
bool bDoNotReset)

Open the specified device by name.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pszLinkName
Name of the device to be opened

bDoNotReset
If true, do not issue reset, assume all is well. Defaults to false .

If a previous board was open, close it. Open the device, get pointer to the PCI registers,
and reset the board if specified.

Return Value

Parameters

Return Codes

See Also

Parameters

Comments

DLL User's Guide for the AlphiDll - 01/22/01 26

Resetting the board will force the Bootloader into a mode which accepts HOST
commands. Use StartX0 to boot the user code in FLASH, if desired.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

Device Names Close StartX0

AlphiPciDevice::Open
HRESULT AlphiPciDevice::Open(

unsigned BoardNumber,
bool bDoNotReset)

Open the specified device by device number.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

BoardNumber
Index of the card to open starting at zero.

bDoNotReset
If true, do not issue reset, assume all is well. Defaults to false .

Devices are numbered consecutively starting from zero. To enumerate all devices in the
system, consecutively open each device from zero until the first one fails.
GetDeviceCapabilities will allow for querying the device capabilities and device
name.

If a previous board was open, close it. Open the device, get pointer to the PCI registers,
and reset the board if specified.

Resetting the board will force the Bootloader into a mode which accepts HOST
commands. Use StartX0 to boot the user code in FLASH, if desired.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

Device Names Close StartX0 GetDeviceCapabilities

AlphiPciDevice::ReadAmccNvram
HRESULT AlphiPciDevice::ReadAmccNvram(

AmccNvramImage & Image)

Read the NVRAM image stored in the device.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Image
Reference to the NVRAM image to copy to.

Return Codes

See Also

Parameters

Comments

Return Codes

See Also

Parameters

DLL User's Guide for the AlphiDll - 01/22/01 27

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AmccNvramImage

AlphiPciDevice::ReadDword
HRESULT AlphiPciDevice::ReadDword(

DWORD DspAddress,
DWORD * pValue)

Ask the Bootloader to read from the specified DSP address.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

DspAddress
Address in the DSP to read from.

pValue
Pointer to where to put the result.

Using the READ_DWORD request, ask the Bootloader to read the DWORD.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AlphiPciDevice::ReadFifo
HRESULT AlphiPciDevice::ReadFifo(

DWORD * pBuffer,
DWORD NumDWords,
ucr UserFunction,
PVOID UserData)

Read from the FIFO port using Bus Master DMA.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pBuffer
Pointer to the buffer to put read data.

NumDWords
Number of DWORDS in the buffer.

UserFunction
Pointer to user supplied completion function.

UserData
User data provided to completion function.

This function queues a request to the driver to read the contents of pBuffer from the
DSP. On the AMCC, this is through the actual FIFO present on the AMCC. On the

Return Codes

See Also

Parameters

Comments

Return Codes

Parameters

Comments

DLL User's Guide for the AlphiDll - 01/22/01 28

PLX, this sets up the table of physical pointers to the pages and interrupts the DSP. The
function returns immediately.

Upon completion, the user supplied function UserFunction is called with the address
and size of the buffer, as well as the value UserData. The user completion function is
called on a separate thread and at a higher priority, and will interrupt the main thread of
execution, similiar to a hardware interupt.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

(*ucr) WriteFifo CancelPendingReadRequests

AlphiPciDevice::ReadFifoDirect
HRESULT AlphiPciDevice::ReadFifoDirect(

DWORD * pBuffer,
DWORD NumDWords)

Read directly from the FIFO port.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pBuffer
Pointer to where to put the read values.

NumDWords
Number of values to be read.

Read the specified number of values from the FIFO port of the AMCC chip.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

At present, there is no provision for timeouts in this function.

AlphiPciDevice::ReadFifoDirect
HRESULT AlphiPciDevice::ReadFifoDirect(

WORD * pBuffer,
DWORD NumWords)

Read directly from the FIFO port.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pBuffer
Pointer to where to put the read values.

NumWords
Number of values to be read.

Return Codes

See Also

Parameters

Comments

Return Codes

Developer
Notes

Parameters

DLL User's Guide for the AlphiDll - 01/22/01 29

Read the specified number of values from the FIFO port of the AMCC chip.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

At present, there is no provision for timeouts in this function.

AlphiPciDevice::ReadFifoDirect
HRESULT AlphiPciDevice::ReadFifoDirect(

BYTE * pBuffer,
DWORD NumBytes)

Read directly from the FIFO port.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pBuffer
Pointer to where to put the read values.

NumBytes
Number of values to be read.

Read the specified number of values from the FIFO port of the AMCC chip.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

At present, there is no provision for timeouts in this function.

AlphiPciDevice::ReadMbox
HRESULT AlphiPciDevice::ReadMbox(

WORD WhichMailbox,
bool fWait,
DWORD * pData)

Read a DWORD from the specified mailbox written by the DSP.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

WhichMailbox
Mailbox to read from. Ranges from 0-3.

fWait
Should we wait for something to be sent by the DSP? Otherwise return the current
value in the mailbox.

pData
Where to put the read DWORD, NULL if we don't want it.

On the AMCC 5933, there are four mailboxes in each direction (to the DSP and from
the DSP).

Comments

Return Codes

Developer
Notes

Parameters

Comments

Return Codes

Developer
Notes

Parameters

Comments

DLL User's Guide for the AlphiDll - 01/22/01 30

On the PLX9080, there are a total of 8 bidirectional mailboxes. This DLL and the DSP
library work to simulate the 4 mailboxes in each direction, as well as the full/empty
flags and interrupt support on full/empty status.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AlphiPciDevice::ReadPlxNvram
HRESULT AlphiPciDevice::ReadPlxNvram(

PlxNvramImage & Image)

Read the NVRAM image stored in the device.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Image
Reference to the NVRAM image to copy to.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

PlxNvramImage

AlphiPciDevice::Reset
HRESULT AlphiPciDevice::Reset()

Reset the DSP and/or any IPs. If a DSP is present, ensure successful communication
with DSP.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Reset the card for 200 mS (as per IP specification), determine whether the DSP has
responded, and by which mailbox, and set AlphiPciDevice::m_InterfaceType
accordingly. Perform an IsKernelRunning token exchange to confirm successful reset.

By having a value in mailbox 0 as the DSP comes out of reset, the Bootloader knows to
load into a HOST control mode.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

Bootloaders for PCI-4Pack prior to Version 1.4 used mailbox 0 exclusively for
communication. Version 1.4 and later is common to all products, and use standard
mailboxes. PLX devices utilize a similiar handshake to force loading the bootloader.

Return Codes

Parameters

Return Codes

See Also

Comments

Return Codes

Developer
Notes

DLL User's Guide for the AlphiDll - 01/22/01 31

AlphiPciDevice::RetrieveSoftwareVersion
HRESULT AlphiPciDevice::RetrieveSoftwareVersion(

DWORD & Version)

Retrieve version of the bootloader (or DSP application if supported).

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Version
Reference to the returned version identifier.

Bootloaders prior to version 1.7 do not support this method of retrieving the version.
For Versions 1.4 and later, the serial port will report the version after a RESET (in
certain boot modes).

ALPHI_S_DSP_ACK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AlphiPciDevice::SelectPage
HRESULT AlphiPciDevice::SelectPage(

DWORD Page)

Select which IP memory space is mapped to the unified memory space.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Page
Select which IP space is mapped into unified space.

1-4: IP A-D 16 bit, 5: IP AB 32 bit, 6: IP CD 32 bit, 7: ABCD unified 16 bit, 8: ABCD
unified 32 bit.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AlphiPciDevice::ShareHostMemory
HRESULT AlphiPciDevice::ShareHostMemory(

void * pSharedMemory,
DWORD Size)

Share the designated buffer with the DSP.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pSharedMemory
Pointer to beginning of shared memory.

Parameters

Comments

Return Codes

Parameters

Comments

Return Codes

Parameters

DLL User's Guide for the AlphiDll - 01/22/01 32

Size
Size of buffer to share in bytes.

Allocate and free the buffer using AllocSharableMemory and FreeSharableMemory.
This way, the buffer is guaranteed to start at an address that is divisible by the page size
of the processor, and therefore, greatly simplifying the DSP's addressing.

Cancel the sharing by calling UnshareHostMemory.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AllocSharableMemory FreeSharableMemory UnshareHostMemory

AlphiPciDevice::Start
HRESULT AlphiPciDevice::Start()

Begin execution of the downloaded DSP code.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Ensure that there is a program starting address (from a successful Download), and ask
the DSP to begin execution.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AlphiPciDevice::StartX0
HRESULT AlphiPciDevice::StartX0()

Begin execution of the previously downloaded Tektronix file.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

DownloadX0

AlphiPciDevice::UnhookMailboxInterrupt
HRESULT AlphiPciDevice::UnhookMailboxInterrupt()

Remove a hook installed with HookMailboxInterrupt.

Comments

Return Codes

See Also

Comments

Return Codes

Return Codes

See Also

DLL User's Guide for the AlphiDll - 01/22/01 33

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Cancels any outstanding interrupt requests, and waits for the interrupt thread to exit.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

HookMailboxInterrupt

AlphiPciDevice::Unmap
HRESULT AlphiPciDevice::Unmap(

LinearAddress & Address)

Unmap pointer to physical resource.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Address
Linear address directly accessible by pointer dereference. See LinearAddress.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

IOCTL_ALPHIPCI_UNMAP

AlphiPciDevice::UnshareHostMemory
HRESULT AlphiPciDevice::UnshareHostMemory()

Disable sharing the buffer with the DSP.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

ShareHostMemory

AlphiPciDevice::WriteAmccNvram
HRESULT AlphiPciDevice::WriteAmccNvram(

AmccNvramImage & Image)

Write the NVRAM image to the device.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Comments

Return Codes

See Also

Parameters

Return Codes

See Also

Return Codes

See Also

DLL User's Guide for the AlphiDll - 01/22/01 34

Image
Reference to the NVRAM image to copy from.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AmccNvramImage

AlphiPciDevice::WriteDword
HRESULT AlphiPciDevice::WriteDword(

DWORD DspAddress,
DWORD Value)

Ask the Bootloader to write to the specified DSP address.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

DspAddress
Address in the DSP to write to.

Value
Value to be written.

Using the WRITE_DWORD request, ask the Bootloader to write the DWORD.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AlphiPciDevice::WriteFifo
HRESULT AlphiPciDevice::WriteFifo(

DWORD * pBuffer,
DWORD NumDWords,
ucr UserFunction,
PVOID UserData)

Write to the FIFO port using Bus Master DMA.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pBuffer
Pointer to the buffer to be written.

NumDWords
Number of DWORDS in the buffer.

UserFunction
Pointer to user supplied completion function.

UserData
User data provided to completion function.

Parameters

Return Codes

See Also

Parameters

Comments

Return Codes

Parameters

DLL User's Guide for the AlphiDll - 01/22/01 35

This function queues a request to the driver to copy the contents of pBuffer to the DSP.
On the AMCC, this is through the actual FIFO present on the AMCC. On the PLX, this
sets up the table of physical pointers to the pages and interrupts the DSP. The function
returns immediately.

Upon completion, the user supplied function UserFunction is called with the address
and size of the buffer, as well as the value UserData. The user completion function is
called on a separate thread and at a higher priority, and will interrupt the main thread of
execution, similiar to a hardware interupt.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

(*ucr) ReadFifo CancelPendingWriteRequests

AlphiPciDevice::WriteFifoDirect
HRESULT AlphiPciDevice::WriteFifoDirect(

DWORD * pBuffer,
DWORD NumDWords)

Write directly to the FIFO port.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pBuffer
Pointer to where to find the values to write.

NumDWords
Number of values to be written.

Write the specified number of values to the FIFO port of the AMCC chip.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

At present, there is no provision for timeouts in this function.

AlphiPciDevice::WriteFifoDirect
HRESULT AlphiPciDevice::WriteFifoDirect(

WORD * pBuffer,
DWORD NumWords)

Write directly to the FIFO port.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pBuffer
Pointer to where to find the values to write.

Comments

Return Codes

See Also

Parameters

Comments

Return Codes

Developer
Notes

Parameters

DLL User's Guide for the AlphiDll - 01/22/01 36

NumWords
Number of values to be written.

Write the specified number of values to the FIFO port of the AMCC chip.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

At present, there is no provision for timeouts in this function.

AlphiPciDevice::WriteFifoDirect
HRESULT AlphiPciDevice::WriteFifoDirect(

BYTE * pBuffer,
DWORD NumBytes)

Write directly to the FIFO port.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pBuffer
Pointer to where to find the values to write.

NumBytes
Number of values to be written.

Write the specified number of values to the FIFO port of the AMCC chip.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

At present, there is no provision for timeouts in this function.

AlphiPciDevice::WriteMbox
HRESULT AlphiPciDevice::WriteMbox(

WORD WhichMailbox,
DWORD dwData)

Write a DWORD to the specified mailbox to be read by the DSP.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

WhichMailbox
Mailbox to write to. Ranges from 0-3.

dwData
Data to write.

The function will wait until the mailbox has read the previous value before writing the
new value. If the DSP does not read the old value, this function times out.

Comments

Return Codes

Developer
Notes

Parameters

Comments

Return Codes

Developer
Notes

Parameters

Comments

DLL User's Guide for the AlphiDll - 01/22/01 37

On the AMCC 5933, there are four mailboxes in each direction (to the DSP and from
the DSP).

On the PLX9080, there are a total of 8 bidirectional mailboxes. This DLL and the DSP
library work to simulate the 4 mailboxes in each direction, as well as the full/empty
flags and interrupt support on full/empty status.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AlphiPciDevice::WriteMbox
HRESULT AlphiPciDevice::WriteMbox(

WORD WhichMailbox,
DWORD dwData,
bool fWait)

Write a DWORD to the specified mailbox to be read by the DSP.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

WhichMailbox
Mailbox to write to. Ranges from 0-3.

dwData
Data to write.

fWait
Wait for the mailbox to be empty by the DSP before writing a new value.

The function will wait until the mailbox has read the previous value before writing the
new value. If the DSP does not read the old value, this function times out.

On the AMCC 5933, there are four mailboxes in each direction (to the DSP and from
the DSP).

On the PLX9080, there are a total of 8 bidirectional mailboxes. This DLL and the DSP
library work to simulate the 4 mailboxes in each direction, as well as the full/empty
flags and interrupt support on full/empty status.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AlphiPciDevice::WritePlxNvram
HRESULT AlphiPciDevice::WritePlxNvram(

PlxNvramImage & Image)

Write the NVRAM image to the device.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Return Codes

Parameters

Comments

Return Codes

DLL User's Guide for the AlphiDll - 01/22/01 38

Image
Reference to the NVRAM image to copy to.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

PlxNvramImage

AlphiPciDevice::~AlphiPciDevice
AlphiPciDevice::~AlphiPciDevice()

Destructor.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Closes the device, if not done previously.

Close

Parameters

Return Codes

See Also

Comments

See Also

DLL User's Guide for the AlphiDll - 01/22/01 39

C Functions and Callbacks
C functions implementing the functionality of this package. Many of these functions
are exported for use by applications written in C or other languages.

(*ucr)
typedef void (*ucr)(

DWORD * pBuffer,
DWORD NumDwords,
void * UserData)

User supplied Completion Routine.

Defined in: D:/ALPHIPCI/INCLUDE/ALPHIDLL.H

pBuffer
Pointer to the buffer which has completed.

NumDwords
Size of the buffer which has completed.

UserData
User's data supplied to the queueing function.

Make sure that this function is declared stdcall, or the program will crash.

This function is called on a separate thread which is running at
THREAD_PRIORITY_TIME_CRITICAL. This is done to simulate the reception of an
interrupt, where this function is the interrupt handler. It is strongly urged to return from
this function in a timely manner, as it will run to completion as the highest priority
thread. If significant processing is to be performed, it is better to make use of NT
scheduling objects such as semaphores, or to post a message to a window.

(*UsersIntCompletionRoutine)
typedef void (*UsersIntCompletionRoutine)(

void * UserData,
DWORD Cause)

User supplied Interrupt Completion Routine.

Defined in: D:/ALPHIPCI/INCLUDE/ALPHIDLL.H

UserData
User's data supplied to the queueing function.

Cause
Device dependent cause for calling this function.

Parameters

Developer
Notes

Parameters

DLL User's Guide for the AlphiDll - 01/22/01 40

For AMCC based devices, Cause is the value that was in AMCC.INTCSR at the time
of the interrupt. For PLX based devices, Cause is the value that was in PLX.intcsr
masked by the bits of interest, at the time of the interrupt.

Make sure that this function is declared stdcall, or the program will crash.

This function is called on a separate thread which is running at
THREAD_PRIORITY_TIME_CRITICAL. This is done to simulate the reception of an
interrupt, where this function is the interrupt handler. It is strongly urged to return from
this function in a timely manner, as it will run to completion as the highest priority
thread. If significant processing is to be performed, it is better to make use of NT
scheduling objects such as semaphores, or to post a message to a window.

AllocSharableMemory
Dll HRESULT __stdcall AllocSharableMemory(

void ** pSharedMemory,
DWORD Size)

Allocate memory intended to be shared between board and HOST.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pSharedMemory
Address of returned pointer.

Size
Desired size in bytes.

Calls the system function VirtualAlloc to allocate memory aligned to a 4K page. By
aligning the buffer to a 4K page, the DSP does not have to constantly add offsets when
calculating the correct physical addresses of this memory.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

FreeSharableMemory

BurnBootFlashX0
Dll HRESULT __stdcall BurnBootFlashX0(

AlphiPciDevice * pThis)

Burn the boot area of the FLASH with the previously downloaded Tektronix file.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

Calls AlphiPciDevice::BurnBootFlashX0 and returns the result.

Comments

Developer
Notes

Parameters

Comments

Return Codes

See Also

Parameters

Comments

DLL User's Guide for the AlphiDll - 01/22/01 41

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

BurnUserFlashX0
Dll HRESULT __stdcall BurnUserFlashX0(

AlphiPciDevice * pThis)

Burn the user area of the FLASH with the previously downloaded Tektronix file.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

Calls AlphiPciDevice::BurnUserFlashX0 and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

CancelPendingReadRequests
Dll HRESULT __stdcall CancelPendingReadRequests(

AlphiPciDevice * pThis)

Cancel any pending read requests.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

Calls AlphiPciDevice::CancelPendingReadRequests and returns the result.

Cancels any outstanding read packets and cleans up.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

ReadFifo

CancelPendingWriteRequests
Dll HRESULT __stdcall CancelPendingWriteRequests(

AlphiPciDevice * pThis)

Cancel any pending write requests.

Return Codes

Parameters

Comments

Return Codes

Parameters

Comments

Return Codes

See Also

DLL User's Guide for the AlphiDll - 01/22/01 42

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

Calls AlphiPciDevice::CancelPendingWriteRequests and returns the result.

Cancels any outstanding read packets and cleans up. Resets the PCI to DSP FIFO on
AMCC.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

WriteFifo

Close
Dll HRESULT __stdcall Close(

AlphiPciDevice * pThis)

Free resources and close the device.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

Calls AlphiPciDevice::Close. Then deletes pThis.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

DisplayErrorMessageBox
HRESULT __stdcall DisplayErrorMessageBox(

char * szApplicationName,
HRESULT Error)

Display a modal dialog box with the text of any ERROR or higher message associated
with the HRESULT.

Defined in: D:/ALPHIPCI/HOST
EXAMPLES/ALPHIERRORCODE/DISPLAYERRORCODE.CPP

The value of Error.

szApplicationName
Text placed in the title bar of the dialog box.

Error
Returned HRESULT from a DLL call.

Parameters

Comments

Return Codes

See Also

Parameters

Comments

Return Codes

Return Value

Parameters

DLL User's Guide for the AlphiDll - 01/22/01 43

This function is in AlphiErrorCode.dll, which means that AlphiErrorCode.lib needs to
be included in your link.

DisplayErrorToConsole
HRESULT __stdcall DisplayErrorToConsole(

HRESULT Error)

Display the text of any ERROR or higher message associated with the HRESULT to
the console.

Defined in: D:/ALPHIPCI/HOST
EXAMPLES/ALPHIERRORCODE/DISPLAYERRORCODE.CPP

The value of Error.

Error
Returned HRESULT from a DLL call.

This function is in AlphiErrorCode.dll, which means that AlphiErrorCode.lib needs to
be included in your link.

DisplayInfoMessageBox
HRESULT __stdcall DisplayInfoMessageBox(

char * szApplicationName,
HRESULT Error)

Display a modal dialog box with the text of any INFORMATIONAL or higher
message associated with the HRESULT.

Defined in: D:/ALPHIPCI/HOST
EXAMPLES/ALPHIERRORCODE/DISPLAYERRORCODE.CPP

The value of Error.

szApplicationName
Text placed in the title bar of the dialog box.

Error
Returned HRESULT from a DLL call.

This function is in AlphiErrorCode.dll, which means that AlphiErrorCode.lib needs to
be included in your link.

DisplayInfoToConsole
HRESULT __stdcall DisplayInfoToConsole(

HRESULT Error)

Developer
Notes

Return Value

Parameters

Developer
Notes

Return Value

Parameters

Developer
Notes

DLL User's Guide for the AlphiDll - 01/22/01 44

Display the text of any INFORMATIONAL or higher message associated with the
HRESULT to the console.

Defined in: D:/ALPHIPCI/HOST
EXAMPLES/ALPHIERRORCODE/DISPLAYERRORCODE.CPP

The value of Error.

Error
Returned HRESULT from a DLL call.

This function is in AlphiErrorCode.dll, which means that AlphiErrorCode.lib needs to
be included in your link.

DisplayResultMessageBox
HRESULT __stdcall DisplayResultMessageBox(

char * szApplicationName,
HRESULT Error)

Display a modal dialog box with the text of any message associated with the
HRESULT.

Defined in: D:/ALPHIPCI/HOST
EXAMPLES/ALPHIERRORCODE/DISPLAYERRORCODE.CPP

The value of Error.

szApplicationName
Text placed in the title bar of the dialog box.

Error
Returned HRESULT from a DLL call.

This function is in AlphiErrorCode.dll, which means that AlphiErrorCode.lib needs to
be included in your link.

DisplayResultToConsole
HRESULT __stdcall DisplayResultToConsole(

HRESULT Error)

Display the text of any message associated with the HRESULT to the console.

Defined in: D:/ALPHIPCI/HOST
EXAMPLES/ALPHIERRORCODE/DISPLAYERRORCODE.CPP

The value of Error.

Error
Returned HRESULT from a DLL call.

This function is in AlphiErrorCode.dll, which means that AlphiErrorCode.lib needs to
be included in your link.

Return Value

Parameters

Developer
Notes

Return Value

Parameters

Developer
Notes

Return Value

Parameters

Developer
Notes

DLL User's Guide for the AlphiDll - 01/22/01 45

DisplayWarningMessageBox
HRESULT __stdcall DisplayWarningMessageBox(

char * szApplicationName,
HRESULT Error)

Display a modal dialog box with the text of any WARNING or higher message
associated with the HRESULT.

Defined in: D:/ALPHIPCI/HOST
EXAMPLES/ALPHIERRORCODE/DISPLAYERRORCODE.CPP

The value of Error.

szApplicationName
Text placed in the title bar of the dialog box.

Error
Returned HRESULT from a DLL call.

This function is in AlphiErrorCode.dll, which means that AlphiErrorCode.lib needs to
be included in your link.

DisplayWarningToConsole
HRESULT __stdcall DisplayWarningToConsole(

HRESULT Error)

Display the text of any WARNING or higher message associated with the HRESULT
to the console.

Defined in: D:/ALPHIPCI/HOST
EXAMPLES/ALPHIERRORCODE/DISPLAYERRORCODE.CPP

The value of Error.

Error
Returned HRESULT from a DLL call.

This function is in AlphiErrorCode.dll, which means that AlphiErrorCode.lib needs to
be included in your link.

Download
Dll HRESULT __stdcall Download(

AlphiPciDevice * pThis,
const char * szFilename)

Download the COFF file to the DSP.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Return Value

Parameters

Developer
Notes

Return Value

Parameters

Developer
Notes

DLL User's Guide for the AlphiDll - 01/22/01 46

pThis
Pointer to the card object.

szFilename
NULL terminated filename.

Calls AlphiPciDevice::Download and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

DownloadX0
Dll HRESULT __stdcall DownloadX0(

AlphiPciDevice * pThis,
const char * szFilename)

Download the Tektronix X0 file to the buffer on the card.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

szFilename
NULL terminated filename.

Calls AlphiPciDevice::DownloadX0 and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

FreeSharableMemory
Dll HRESULT __stdcall FreeSharableMemory(

void * pSharedMemory)

Free memory previously allocated by AllocSharableMemory.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pSharedMemory
Pointer to the buffer.

Calls the system function VirtualFree to free memory aligned to a 4K page. By
aligning the buffer to a 4K page, the DSP does not have to constantly add offsets when
calculating the correct physical addresses of this memory.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AllocSharableMemory

Parameters

Comments

Return Codes

Parameters

Comments

Return Codes

Parameters

Comments

Return Codes

See Also

DLL User's Guide for the AlphiDll - 01/22/01 47

GetDeviceCapabilities
Dll const DeviceCaps * __stdcall GetDeviceCapabilities(

AlphiPciDevice * pThis)

Get a pointer to the Device Capabilities.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Constant pointer to the DeviceCaps.

pThis
Pointer to the card object.

Calls AlphiPciDevice::GetDeviceCapabilities and returns the result.

DeviceCaps

GetResultText
HRESULT __stdcall GetResultText(

HRESULT Error,
char * buffer,
size_t size)

Retrieve the text of any message associated with the HRESULT.

Defined in: D:/ALPHIPCI/HOST
EXAMPLES/ALPHIERRORCODE/DISPLAYERRORCODE.CPP

S_OK if successful, E_FAIL if it was not found (but the text "Could not find error
message." was be copied to the buffer).

Error
Returned HRESULT from a DLL call.

buffer
Pointer to user buffer to receive the message.

size
Size of the user buffer.

This function is in AlphiErrorCode.dll, which means that AlphiErrorCode.lib needs to
be included in your link.

HookMailboxInterrupt
Dll HRESULT __stdcall HookMailboxInterrupt(

AlphiPciDevice * pThis,
eIntType IntType,

Return Value

Parameters

Comments

See Also

Return Value

Parameters

Developer
Notes

DLL User's Guide for the AlphiDll - 01/22/01 48

UsersIntCompletionRoutine UsersInterruptRoutine,
void * UsersInterruptData)

Install a hook to call UsersInterruptRoutine as a result of a valid interrupt cause.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

IntType
Which cause(s) to look at. See eIntType for AMCC class devices. PLX device
causes have not been defined in the header file as yet.

UsersInterruptRoutine
Pointer to the user's completion routine. See (*UsersIntCompletionRoutine).

UsersInterruptData
User data passed to the completion function.

Calls AlphiPciDevice::HookMailboxInterrupt and returns the result.

On the AMCC, an interrupt can be generated from up to two causes at a time. One
interrupt cause is the DSP writing to a particular mailbox, or on certain cards, a
hardware event could generate an interrupt. The other cause is generated by the DSP
reading from a particular mailbox.

On the PLX, an interrupt can be generated on any of the following: DSP read of a
mailbox, DSP write to a mailbox, a hardware event, or a doorbell write by the DSP.

This function operates by creating a separate thread running at the highest priority. This
thread blocks in the device driver until the interrupt event has occurred. When the
thread is freed, it calls UsersInterruptRoutine with the parameter UsersInterruptData
and the state of the interrupts at the time of calling. When the user function completes,
the thread then blocks again in the device driver. It is impossible not to be called from
an interrupt cause, but it is possible to have several interrupt events combined into one
call to the user function, if they occur fast enough.

This function really deserves a better name.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

UnhookMailboxInterrupt (*UsersIntCompletionRoutine)

IsKernelRunning
Dll HRESULT __stdcall IsKernelRunning(

AlphiPciDevice * pThis)

Ensure that the DSP can respond to requests from this API.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

Parameters

Comments

Developer
Notes
Return Codes

See Also

Parameters

DLL User's Guide for the AlphiDll - 01/22/01 49

Calls AlphiPciDevice::IsKernelRunning and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

Map
Dll HRESULT __stdcall Map(

AlphiPciDevice * pThis,
eTypeOfAccess TypeOfAccess,
LinearAddress * pAddress)

Retrieve a pointer to the physical card resource.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

TypeOfAccess
Describes the type of access requested. See eTypeOfAccess.

pAddress
Linear address directly accessible by pointer dereference. See LinearAddress.

Calls AlphiPciDevice::Map and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

Open
Dll HRESULT __stdcall Open(

AlphiPciDevice ** pThis,
const char * pszLinkName)

Allocate resources for a new board, and attempt to open it.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Returned handle to the open board if successful.

pszLinkName
Name of the device to open.

Allocates a new AlphiPciDevice and calls AlphiPciDevice::Open. If the open fails,
deletes the AlphiPciDevice. Returns the result of the Open.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

Comments

Return Codes

Parameters

Comments

Return Codes

Parameters

Comments

Return Codes

DLL User's Guide for the AlphiDll - 01/22/01 50

Device Names

OpenByNumber
Dll HRESULT __stdcall OpenByNumber(

AlphiPciDevice ** pThis,
unsigned DeviceNumber)

Allocate resources for a new board, and attempt to open it.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Returned handle to the open board if successful.

DeviceNumber
Name of the device to open.

Allocates a new AlphiPciDevice and calls AlphiPciDevice::Open. If the open fails,
deletes the AlphiPciDevice. Returns the result of the Open.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

Device Names

OpenByNumberWithoutReset
Dll HRESULT __stdcall OpenByNumberWithoutReset(

AlphiPciDevice ** pThis,
unsigned DeviceNumber)

Allocate resources for a new board, and attempt to open it.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Returned handle to the open board if successful.

DeviceNumber
Name of the device to open.

Allocates a new AlphiPciDevice and calls AlphiPciDevice::Open. If the open fails,
deletes the AlphiPciDevice. Returns the result of the Open with the bDoNotReset set to
true.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

Device Names

See Also

Parameters

Comments

Return Codes

See Also

Parameters

Comments

Return Codes

See Also

DLL User's Guide for the AlphiDll - 01/22/01 51

OpenWithoutReset
Dll HRESULT __stdcall OpenWithoutReset(

AlphiPciDevice ** pThis,
const char * pszLinkName)

Allocate resources for a new board, and attempt to open it.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Returned handle to the open board if successful.

pszLinkName
Name of the device to open.

Allocates a new AlphiPciDevice and calls AlphiPciDevice::Open. If the open fails,
deletes the AlphiPciDevice. Returns the result of the Open with the bDoNotReset set to
true.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

Device Names

ReadAmccNvram
Dll HRESULT __stdcall ReadAmccNvram(

AlphiPciDevice * pThis,
AmccNvramImage * pImage)

Read the NVRAM image stored in the device.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pImage
Pointer to the NVRAM image to copy to.

Calls AlphiPciDevice::ReadAmccNvram and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AmccNvramImage

Parameters

Comments

Return Codes

See Also

Parameters

Comments

Return Codes

See Also

DLL User's Guide for the AlphiDll - 01/22/01 52

ReadDword
Dll HRESULT __stdcall ReadDword(

AlphiPciDevice * pThis,
DWORD DspAddress,
DWORD * pValue)

Ask the Bootloader to read from the specified DSP address.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

DspAddress
Address in the DSP to read from.

pValue
Pointer to where to put the result.

Calls AlphiPciDevice::ReadDword and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

ReadFifo
Dll HRESULT __stdcall ReadFifo(

DWORD * pBuffer,
DWORD NumDWords,
ucr UserFunction,
PVOID UserData)

Read from the FIFO port using Bus Master DMA.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pBuffer
Pointer to the buffer to be written.

NumDWords
Number of DWORDS in the buffer.

UserFunction
Pointer to user supplied completion function.

UserData
User data provided to completion function.

Calls AlphiPciDevice::ReadFifo and returns the result.

This function queues a request to the driver to read the contents of pBuffer from the
DSP. On the AMCC, this is through the actual FIFO present on the AMCC. On the
PLX, this sets up the table of physical pointers to the pages and interrupts the DSP. The
function returns immediately.

Parameters

Comments

Return Codes

Parameters

Comments

DLL User's Guide for the AlphiDll - 01/22/01 53

Upon completion, the user supplied function UserFunction is called with the address
and size of the buffer, as well as the value UserData. The user completion function is
called on a separate thread and at a higher priority, and will interrupt the main thread of
execution, similiar to a hardware interupt.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

(*ucr) WriteFifo CancelPendingReadRequests

ReadFifoDirect
Dll HRESULT __stdcall ReadFifoDirect(

AlphiPciDevice * pThis,
DWORD * pBuffer,
DWORD NumDWords)

Read directly from the FIFO port.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pBuffer
Pointer to where to put the read values.

NumDWords
Number of values to be read.

Calls AlphiPciDevice::ReadFifoDirect and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

ReadFifoDirectByte
Dll HRESULT __stdcall ReadFifoDirectByte(

AlphiPciDevice * pThis,
BYTE * pBuffer,
DWORD NumBytes)

Read directly from the FIFO port.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pBuffer
Pointer to where to put the read values.

Return Codes

See Also

Parameters

Comments

Return Codes

Parameters

DLL User's Guide for the AlphiDll - 01/22/01 54

NumBytes
Number of values to be read.

Calls AlphiPciDevice::ReadFifoDirect and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

ReadFifoDirectWord
Dll HRESULT __stdcall ReadFifoDirectWord(

AlphiPciDevice * pThis,
WORD * pBuffer,
DWORD NumWords)

Read directly from the FIFO port.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pBuffer
Pointer to where to put the read values.

NumWords
Number of values to be read.

Calls AlphiPciDevice::ReadFifoDirect and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

ReadMbox
Dll HRESULT __stdcall ReadMbox(

AlphiPciDevice * pThis,
WORD WhichMailbox,
BOOL fWait,
DWORD * pData)

Read a DWORD from the specified PCI mailbox.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

WhichMailbox
Mailbox to write to. Ranges from 0-3.

Comments

Return Codes

Parameters

Comments

Return Codes

Parameters

DLL User's Guide for the AlphiDll - 01/22/01 55

fWait
Should we wait for something to be sent by the DSP? Otherwise return the last thing
sent.

pData
Where to put the read DWORD, NULL if we don't want it.

Calls AlphiPciDevice::ReadFifoDirect and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

ReadMboxByte
Dll HRESULT __stdcall ReadMboxByte(

AlphiPciDevice * pThis,
WORD WhichMailbox,
BOOL fWait,
BYTE * pData)

Read a BYTE from the specified PCI mailbox.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

WhichMailbox
Mailbox to write to. Ranges from 0-3.

fWait
Should we wait for something to be sent by the DSP? Otherwise return the last thing
sent.

pData
Where to put the read WORD, NULL if we don't want it.

Calls AlphiPciDevice::ReadFifoDirect and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

ReadMboxWord
Dll HRESULT __stdcall ReadMboxWord(

AlphiPciDevice * pThis,
WORD WhichMailbox,
BOOL fWait,
WORD * pData)

Read a WORD from the specified PCI mailbox.

Comments

Return Codes

Parameters

Comments

Return Codes

DLL User's Guide for the AlphiDll - 01/22/01 56

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

WhichMailbox
Mailbox to write to. Ranges from 0-3.

fWait
Should we wait for something to be sent by the DSP? Otherwise return the last thing
sent.

pData
Where to put the read WORD, NULL if we don't want it.

Calls AlphiPciDevice::ReadFifoDirect and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

ReadPlxNvram
Dll HRESULT __stdcall ReadPlxNvram(

AlphiPciDevice * pThis,
PlxNvramImage * pImage)

Read the NVRAM image stored in the device.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pImage
Pointer to the NVRAM image to copy to.

Calls AlphiPciDevice::ReadPlxNvram and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

PlxNvramImage

Reset
Dll HRESULT __stdcall Reset(

AlphiPciDevice * pThis)

Reset the DSP and any IPs.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Parameters

Comments

Return Codes

Parameters

Comments

Return Codes

See Also

DLL User's Guide for the AlphiDll - 01/22/01 57

pThis
Pointer to the card object.

Calls AlphiPciDevice::Reset and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

RetrieveSoftwareVersion
Dll HRESULT __stdcall RetrieveSoftwareVersion(

AlphiPciDevice * pThis,
DWORD * pVersion)

Retrieve version of the bootloader (or application if supported).

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pVersion
Pointer to the returned version identifier.

Bootloaders prior to version 1.7 do not support this method of retrieving the version.
For these versions, the serial port will report the version after a RESET (in certain boot
modes).

Calls AlphiPciDevice::RetrieveSoftwareVersion and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

ShareHostMemory
Dll HRESULT __stdcall ShareHostMemory(

AlphiPciDevice * pThis,
void * pSharedMemory,
DWORD Size)

Share the designated buffer with the DSP.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pSharedMemory
Pointer to beginning of shared memory.

Size
Size of buffer to share in bytes.

Parameters

Comments

Return Codes

Parameters

Comments

Return Codes

Parameters

DLL User's Guide for the AlphiDll - 01/22/01 58

Allocate and free the buffer using AllocSharableMemory and FreeSharableMemory.
This way, the buffer is guaranteed to start at an address that is divisible by the page size
of the processor, and therefore, greatly simplifying the DSP's addressing.

Cancel the sharing by calling UnshareHostMemory.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AllocSharableMemory FreeSharableMemory UnshareHostMemory

Start
Dll HRESULT __stdcall Start(

AlphiPciDevice * pThis)

Begin execution of the downloaded DSP code.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

Calls AlphiPciDevice::Start and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

StartX0
Dll HRESULT __stdcall StartX0(

AlphiPciDevice * pThis)

Begin execution of the previously downloaded Tektronix file.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

Calls AlphiPciDevice::StartX0 and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

Comments

Return Codes

See Also

Parameters

Comments

Return Codes

Parameters

Comments

Return Codes

DLL User's Guide for the AlphiDll - 01/22/01 59

UnhookMailboxInterrupt
Dll HRESULT __stdcall UnhookMailboxInterrupt(

AlphiPciDevice * pThis)

Remove a hook installed with HookMailboxInterrupt.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

Calls AlphiPciDevice::UnhookMailboxInterrupt and returns the result.

Cancels any outstanding interrupt requests, and waits for the interrupt thread to exit.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

HookMailboxInterrupt

Unmap
Dll HRESULT __stdcall Unmap(

AlphiPciDevice * pThis,
LinearAddress * pAddress)

Unmap pointer to physical resource.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pAddress
Linear address directly accessible by pointer dereference. See LinearAddress.

Calls AlphiPciDevice::Unmap and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

UnshareHostMemory
Dll HRESULT __stdcall UnshareHostMemory(

AlphiPciDevice * pThis)

Disable sharing the buffer with the DSP.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

Parameters

Comments

Return Codes

See Also

Parameters

Comments

Return Codes

DLL User's Guide for the AlphiDll - 01/22/01 60

pThis
Pointer to the card object.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

ShareHostMemory

WriteAmccNvram
Dll HRESULT __stdcall WriteAmccNvram(

AlphiPciDevice * pThis,
AmccNvramImage * pImage)

Write the NVRAM image to the device.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pImage
Pointer to the NVRAM image to copy from.

Calls AlphiPciDevice::WriteAmccNvram and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AmccNvramImage

WriteDword
Dll HRESULT __stdcall WriteDword(

AlphiPciDevice * pThis,
DWORD DspAddress,
DWORD Value)

Ask the Bootloader to write to the specified DSP address.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

DspAddress
Address in the DSP to write to.

Value
Value to be written.

Calls AlphiPciDevice::WriteDword and returns the result.

Parameters

Return Codes

See Also

Parameters

Comments

Return Codes

See Also

Parameters

Comments

DLL User's Guide for the AlphiDll - 01/22/01 61

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

WriteFifo
Dll HRESULT __stdcall WriteFifo(

AlphiPciDevice * pThis,
DWORD * pBuffer,
DWORD NumDWords,
ucr UserFunction,
PVOID UserData)

Write to the FIFO port using Bus Master DMA.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pBuffer
Pointer to the buffer to be written.

NumDWords
Number of DWORDS in the buffer.

UserFunction
Pointer to user supplied completion function.

UserData
User data provided to completion function.

Calls AlphiPciDevice::WriteFifo and returns the result.

This function queues a request to the driver to copy the contents of pBuffer to the DSP.
On the AMCC, this is through the actual FIFO present on the AMCC. On the PLX, this
sets up the table of physical pointers to the pages and interrupts the DSP. The function
returns immediately.

Upon completion, the user supplied function UserFunction is called with the address
and size of the buffer, as well as the value UserData. The user completion function is
called on a separate thread and at a higher priority, and will interrupt the main thread of
execution, similiar to a hardware interupt.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

(*ucr) ReadFifo CancelPendingWriteRequests

WriteFifoDirect
Dll HRESULT __stdcall WriteFifoDirect(

AlphiPciDevice * pThis,

Return Codes

Parameters

Comments

Return Codes

See Also

DLL User's Guide for the AlphiDll - 01/22/01 62

DWORD * pBuffer,
DWORD NumDWords)

Write directly to the FIFO port.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pBuffer
Pointer to where to find the values to write.

NumDWords
Number of values to be written.

Calls AlphiPciDevice::WriteFifoDirect and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

WriteFifoDirectByte
Dll HRESULT __stdcall WriteFifoDirectByte(

AlphiPciDevice * pThis,
BYTE * pBuffer,
DWORD NumBytes)

Write directly to the FIFO port.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pBuffer
Pointer to where to find the values to write.

NumBytes
Number of values to be written.

Calls AlphiPciDevice::WriteFifoDirect and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

WriteFifoDirectWord
Dll HRESULT __stdcall WriteFifoDirectWord(

AlphiPciDevice * pThis,
WORD * pBuffer,
DWORD NumWords)

Parameters

Comments

Return Codes

Parameters

Comments

Return Codes

DLL User's Guide for the AlphiDll - 01/22/01 63

Write directly to the FIFO port.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pBuffer
Pointer to where to find the values to write.

NumWords
Number of values to be written.

Calls AlphiPciDevice::WriteFifoDirect and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

WriteMbox
Dll HRESULT __stdcall WriteMbox(

AlphiPciDevice * pThis,
WORD WhichMailbox,
DWORD dwData)

Write to the specified PCI mailbox.

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

WhichMailbox
Mailbox to write to. Ranges from 0-3.

dwData
Data to write.

Calls AlphiPciDevice::WriteMbox and returns the result.

Smaller values are promoted to DWORDs by the compiler.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

WritePlxNvram
Dll HRESULT __stdcall WritePlxNvram(

AlphiPciDevice * pThis,
PlxNvramImage * pImage)

Write the NVRAM image to the device.

Parameters

Comments

Return Codes

Parameters

Comments

Return Codes

DLL User's Guide for the AlphiDll - 01/22/01 64

Defined in: D:/ALPHIPCI/ALPHIDLL/ALPHIDLL.CPP

pThis
Pointer to the card object.

pImage
Pointer to the NVRAM image to copy from.

Calls AlphiPciDevice::WritePlxNvram and returns the result.

ALPHI_S_OK Operation was successful.

Otherwise Operation failed. See HRESULTs.

AmccNvramImage

Parameters

Comments

Return Codes

See Also

DLL User's Guide for the AlphiDll - 01/22/01 65

IOCTL Messages
The primary means of communication between the DLL or user's application and the
device driver.

IOCTL_ALPHIPCI_CANCEL_SPECIFIC_IO
Ask the device driver to cancel a specific type of pending I/O.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Unfortunately, the WIN32 API function CancelIo will cancel ALL outstanding I/O
requests, and must be called from the originating thread. Since the originating thread is
typically blocked waiting for a completion of an
IOCTL_ALPHIPCI_WAIT_FOR_INTERRUPT request, it cannot be used to cancel
only the outstanding IOCTL_ALPHIPCI_WAIT_FOR_INTERRUPT requests,
leaving the ReadFile and WriteFile requests alone.

IoType
Type of I/O requests to cancel.

none

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_UNSUCCESSFUL Operation failed because this device not fully map
the expected interface.

STATUS_SUCCESS Operation was successful.

IOCTL_ALPHIPCI_GET_AMCC_MODE
Asks the device driver whether the device has I/O or memory mapped AMCC registers.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

none

bool
True if the AMCC is mapped into I/O space, false if memory space.

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_SUCCESS Operation was successful.

This IOCTL exists to support very limited functionality when the AMCC registers are
I/O mapped. By default (and preference) no board is shippped in this configuration. It
is documented for completeness only, and is not intended for use.

Description

Comments

Input

Output

Return Codes

Description

Input

Output

Return Codes

Developer
Notes

DLL User's Guide for the AlphiDll - 01/22/01 66

IOCTL_ALPHIPCI_GET_DEVICE_CAPABILITIES
Query the driver for the device-based name and the card capabilities. In particular,
when the device is opened via the generic "ALPHIPCIn" name, this IOCTL responds
with the device class name such as "PCI4PACK0" or "CPCI-SIP0".

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

none

DeviceCaps
Returned device capabilities of the card.

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_UNSUCCESSFUL Operation failed because this device not fully map
the expected interface.

STATUS_SUCCESS Operation was successful.

IOCTL_ALPHIPCI_GET_MAILBOX_STATUS
Asks the device driver to retrieve the cached mailbox status.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Since the doorbell registers are used to monitor the mailbox status, and the interrupts
are enabled at all times by the driver, the mailbox status must be read and stored in the
driver. This IOCTL allows AlphiDll to query it's current state and to clear select bits.

MailboxStatus
Structure with MailboxStatus.Value containing the bits to fetch (and clear).

MailboxStatus
Returned structure with MailboxStatus.Value containing the returned bits.

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_SUCCESS Operation was successful.

IOCTL_ALPHIPCI_GET_PHYS_ADDRS_OF_CARDS_RES
OURCES

Query the driver for the physical addresses of the AMCC registers and the passthrough
regions. This is useful for users who access the card with realtime add-ons to Windows
NT which cannot directly enumerate the PCI bus for this information.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Description

Input

Output

Return Codes

Description

Comments

Input

Output

Return Codes

Description

DLL User's Guide for the AlphiDll - 01/22/01 67

none

PhysAddrsOfCardResources
Returned physical addresses of card resources.

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_UNSUCCESSFUL Operation failed because this device not fully map
the expected interface.

STATUS_SUCCESS Operation was successful.

IOCTL_ALPHIPCI_MAP
Ask the driver to set up a mapping of physical addresses for the specified card resource
in the page table for this task.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

CardResource
Describes the physical range to map and the type of access.

LinearAddress
Returned linear pointer and size if the operation was successful.

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_ACCESS_VIOLATION Would result in an invalid access.

STATUS_UNSUCCESSFUL Operation failed because this device not fully map
the expected interface.

STATUS_SUCCESS Operation was successful.

Maps

IOCTL_ALPHIPCI_READ_AMCC_NVRAM
Asks the device driver to read the contents of the NVRAM into the supplied buffer.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

none

AmccNvramImage
NVRAM Image from the AMCC.

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_SUCCESS Operation was successful.

In spite of the name, it works on the PLX too. Call with a PlxNvramImage structure.

Input

Output

Return Codes

Description

Input

Output

Return Codes

See Also

Description

Input

Output

Return Codes

Developer
Notes

DLL User's Guide for the AlphiDll - 01/22/01 68

IOCTL_ALPHIPCI_READ_PORT
Asks the device driver to read the specified AMCC register as an I/O port.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Reads the 32 bit register in the AMCC registers at the specified offset.

PortType
Description of what to read.

PortType
Returned structure with value read.

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_SUCCESS Operation was successful.

This IOCTL exists to support very limited functionality when the AMCC registers are
I/O mapped. By default (and preference) no board is shippped in this configuration. It
is documented for completeness only, and is not intended for use.

IOCTL_ALPHIPCI_REPORT_VERSION_IDENTIFIER
Ask the driver to report its version identifier. That is, report the value of
szDriverVersionIdentifier from when it was compiled.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

none

DriverVersionIdentifier
Returned version identifier.

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_SUCCESS Operation was successful.

IOCTL_ALPHIPCI_SELECT_MAILBOX_FOR_INTERRUP
T

Allows the selection of the mailbox which will generate an interrupt.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Because the interrupt handling and FIFO Bus Master DMA logic use the interrupt
control register rather intimately, this IOCTL will allow for its manipulation without
causing interference.

Description

Comments

Input

Output

Return Codes

Developer
Notes

Description

Input

Output

Return Codes

Description

Comments

DLL User's Guide for the AlphiDll - 01/22/01 69

IntType
Type of mailbox interrupt to enable or disable.

none

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_UNSUCCESSFUL Operation failed because this device not fully map
the expected interface.

STATUS_SUCCESS Operation was successful.

IOCTL_ALPHIPCI_SHARE_HOST_MEMORY
Asks the device driver to make the specified buffer accessible to the DSP.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Windows NT utilizes paged memory during its normal processing. This means that a
normal block of memory might be swapped out to disk at any point, and then be
swapped in when a page fault occurs. Normally, this happens transparently to the
application. Additionally, the physical page address has no bearing on the logical
address that the HOST application deals with. This complication is handled by the DSP
and the HOST by using this IOCTL to make the application buffer accessible to the
DSP by 1) page locking the buffer into HOST memory so that the DSP can access it, 2)
once the pages are locked, they will not be moved in physical address by the system, 3)
creating a mapping table in DSP memory so that the logical address (read: offset into a
shared buffer) can be mapped to physical page addresses. The DSP application still
must call the alphi_io library to make sure that the physical page is accessible, but the
tables are handled automatically.

When the sharing is finished, the HOST calls
IOCTL_ALPHIPCI_CANCEL_SPECIFIC_IO, which cancels the mapping.

pBuffer
Pointer uffer to be shared.

none

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_SUCCESS Operation was successful.

IOCTL_ALPHIPCI_UNMAP
Ask the driver to delete a previous mapping.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

LinearAddress
Linear pointer previously returned by IOCTL_ALPHIPCI_MAP.

Input

Output

Return Codes

Description

Comments

Input

Output

Return Codes

Description

Input

DLL User's Guide for the AlphiDll - 01/22/01 70

none

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_UNSUCCESSFUL Operation failed because this device not fully map
the expected interface.

STATUS_SUCCESS Operation was successful.

Maps

IOCTL_ALPHIPCI_WAIT_FOR_INTERRUPT
Informs the driver that the user task is interested in being informed when a interrupt is
received from the device as a result of mailbox activity.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

This IOCTL is placed in a queue separate from the read fifo and write fifo queues, and
will complete upon receipt of an interrupt. Multiple requests can be queued, however,
the user task will have to run and clear the cause before the same type of interrupt can
be received.

The real interrupt routine in the driver stores the value of the INTCSR register in the
AMCC 5933, resets the appropriate bits in the INTCSR to stop the interruption, and
returns. Later another routine checks if there were any outstanding IOCTLs of this type
in the queue. If there is, then the IOCTL is returned with the INTCSR from the
interrupt routine. If there were no IOCTLs pending, the INTCSR is stored, and a later
IOCTL request will return immediately with this result. No interrupts will be lost.

The user task is responsible for enabling mailbox interrupts on the 5933, and selecting
the appropriate mailboxes. It is strongly urged that the
IOCTL_ALPHIPCI_SELECT_MAILBOX_FOR_INTERRUPT IOCTL be used to
do this.

none

InterruptCause
Returned INTCSR in the AMCC 5933 at the time of the interrupt.

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_UNSUCCESSFUL Operation failed because this device not fully map
the expected interface.

STATUS_SUCCESS Operation was successful.

IOCTL_ALPHIPCI_WRITE_AMCC_NVRAM
Asks the device driver to write the contents of the supplied buffer into the NVRAM.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Output

Return Codes

See Also

Description

Comments

Input

Output

Return Codes

Description

DLL User's Guide for the AlphiDll - 01/22/01 71

No confirmation of write is performed.

Although this IOCTL was implemented prior to Revision D of AlphiPci, it did not
operate correctly in those revisions.

AmccNvramImage
NVRAM Image to program the AMCC with.

none

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_SUCCESS Operation was successful.

In spite of the name, it works on the PLX too. Call with a PlxNvramImage structure.

IOCTL_ALPHIPCI_WRITE_PORT
Asks the device driver to write the specified AMCC register as an I/O port.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Writes the 32 bit register in the AMCC registers at the specified offset.

PortType
Description of what to write.

none

STATUS_INVALID_PARAMETER Bad parameter passed.

STATUS_SUCCESS Operation was successful.

This IOCTL exists to support very limited functionality when the AMCC registers are
I/O mapped. By default (and preference) no board is shippped in this configuration. It
is documented for completeness only, and is not intended for use.

Comments

Input

Output

Return Codes

Developer
Notes

Description

Comments

Input

Output

Return Codes

Developer
Notes

DLL User's Guide for the AlphiDll - 01/22/01 72

Constants and Typedefs
Implementation details of this package.

AllowAmccRegisters constant
ULONG AllowAmccRegisters;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the AMCC PCI Operation Registers.

AllowDualPortRam constant
ULONG AllowDualPortRam;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the Dual Ported RAM.

AllowedAccess_t
Represents the type of access allowed on this device. Any of the following ORed
together.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

AllowAmccRegisters AllowPlxRegisters AllowDualPortRam AllowIp0IdSpace
AllowIp0IoSpace AllowIp0MemorySpace AllowIp0All AllowIp1IdSpace
AllowIp1IoSpace AllowIp1MemorySpace AllowIp1All AllowIp2IdSpace
AllowIp2IoSpace AllowIp2MemorySpace AllowIp2All AllowIp3IdSpace
AllowIp3IoSpace AllowIp3MemorySpace AllowIp3All AllowSummitRegisters
AllowHostControlRegion

AllowHostControlRegion constant
ULONG AllowHostControlRegion;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the Direct hardware access area.

See Also

DLL User's Guide for the AlphiDll - 01/22/01 73

AllowIp0All constant
ULONG AllowIp0All;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP A Memory Space.

AllowIp0IdSpace constant
ULONG AllowIp0IdSpace;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP A ID Space.

AllowIp0IoSpace constant
ULONG AllowIp0IoSpace;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP A IO Space.

AllowIp0MemorySpace constant
ULONG AllowIp0MemorySpace;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP A Memory Space.

AllowIp1All constant
ULONG AllowIp1All;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP B.

DLL User's Guide for the AlphiDll - 01/22/01 74

AllowIp1IdSpace constant
ULONG AllowIp1IdSpace;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP B ID Space.

AllowIp1IoSpace constant
ULONG AllowIp1IoSpace;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP B IO Space.

AllowIp1MemorySpace constant
ULONG AllowIp1MemorySpace;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP B Memory Space.

AllowIp1Special constant
ULONG AllowIp1Special;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP B. Memory shared under A.

AllowIp2All constant
ULONG AllowIp2All;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to IP C.

DLL User's Guide for the AlphiDll - 01/22/01 75

AllowIp2IdSpace constant
ULONG AllowIp2IdSpace;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP C ID Space.

AllowIp2IoSpace constant
ULONG AllowIp2IoSpace;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP C IO Space.

AllowIp2MemorySpace constant
ULONG AllowIp2MemorySpace;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP C Memory Space.

AllowIp2Special constant
ULONG AllowIp2Special;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to IP C. Memory shared under A.

AllowIp3All constant
ULONG AllowIp3All;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to IP D.

DLL User's Guide for the AlphiDll - 01/22/01 76

AllowIp3IdSpace constant
ULONG AllowIp3IdSpace;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP D ID Space.

AllowIp3IoSpace constant
ULONG AllowIp3IoSpace;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP D IO Space.

AllowIp3MemorySpace constant
ULONG AllowIp3MemorySpace;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the IP D Memory Space.

AllowIp3Special constant
ULONG AllowIp3Special;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to IP D. Memory shared under A.

AllowPlxRegisters constant
ULONG AllowPlxRegisters;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the PLX PCI Operation Registers.

DLL User's Guide for the AlphiDll - 01/22/01 77

AllowSummitRegisters constant
ULONG AllowSummitRegisters;

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Allow access to the Summit Registers (1553)

szDriverVersionIdentifier[] constant
char const szDriverVersionIdentifier[];

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

This is the version identifier string. If any changes are made to the user interface, this
must be changed.

DLL User's Guide for the AlphiDll - 01/22/01 78

Structures and Enumerations
Non class type data structures and enumerations. Also used to pass data during IOCTL
calls to the driver.

AMCC Structure
typedef struct {

volatile ULONG OMB1;

volatile ULONG OMB2;

volatile ULONG OMB3;

volatile ULONG OMB4;

volatile ULONG IMB1;

volatile ULONG IMB2;

volatile ULONG IMB3;

volatile ULONG IMB4;

volatile ULONG FIFO;

volatile ULONG MWAR;

volatile ULONG MWTC;

volatile ULONG MRAR;

volatile ULONG MRTC;

volatile ULONG MBEF;

volatile ULONG INTCSR;

volatile ULONG MCSR;

} AMCC;

AMCC S5933 Operation Registers as seen from the PCI bus

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

OMB1
Outgoing Mailbox Register 1

OMB2
Outgoing Mailbox Register 2

OMB3
Outgoing Mailbox Register 3

OMB4
Outgoing Mailbox Register 4

IMB1
Incoming Mailbox Register 1

IMB2
Incoming Mailbox Register 2

IMB3
Incoming Mailbox Register 3

IMB4
Incoming Mailbox Register 4

FIFO
FIFO Register port (bidirectional)

Members

DLL User's Guide for the AlphiDll - 01/22/01 79

MWAR
Master Write Address Register

MWTC
Master Write Transfer Count Register

MRAR
Master Read Address Register

MRTC
Master Read Transfer Count Register

MBEF
Mailbox Empty/Full Status

INTCSR
Interrupt Control/Status Register

MCSR
Bus Master Control/Status Register

AmccNvramImage Structure
typedef struct {

USHORT x_RomSignature;

UCHAR x_SizeInBlocks;

ULONG x_EntryPoint;

UCHAR x_Unused1;

ULONG m_UserId;

ULONG m_SizeDualPortRam;

ULONG m_ClockSpeedDsp;

ULONG m_ClockSpeed8530;

ULONG m_BootOption;

ULONG m_SerialNumber;

UCHAR m_HardwareRevision[4];

UCHAR m_ProgrammedLogicRevision[4];

UCHAR x_Unused2[0x18];

USHORT m_VendorId;

USHORT m_DeviceId;

UCHAR x_Unused3;

UCHAR m_BusMasterConfig;

UCHAR x_Unused4[2];

UCHAR m_RevisionId;

ULONG m_ClassCode;

UCHAR m_LatencyTimer;

UCHAR m_HeaderType;

UCHAR m_SelfTest;

ULONG m_Bar[6];

UCHAR x_Unused5[8];

ULONG m_ExpansionRom;

UCHAR x_Unused6[8];

UCHAR m_IntLine;

UCHAR m_IntPin;

UCHAR m_MinGrant;

UCHAR m_MaxLatency;

} AmccNvramImage;

NVRAM Image format. See the AMCC documentation for certain details.

DLL User's Guide for the AlphiDll - 01/22/01 80

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

x_RomSignature
Not used. (0-1)

x_SizeInBlocks
Not used. (2)

x_EntryPoint
Not used. (3-6)

x_Unused1
Not used. (7)

m_UserId
User ID. (8-b)

m_SizeDualPortRam
Size of Dual Port RAM in bytes. (c-f)

m_ClockSpeedDsp
Clock speed of the DSP in Hertz. (10-13)

m_ClockSpeed8530
Clock speed of PCLK at the 8530 in Hertz. (14-17)

m_BootOption
What to do at RESET. (18-1b)

m_SerialNumber
Serial number in decimal. (1c-1f)

m_HardwareRevision[4]
Three character string describing hardware version. (20-23)

m_ProgrammedLogicRevision[4]
Three character string describing FPGA version. (24-27)

x_Unused2[0x18]
Not used. (28-3f)

m_VendorId
Vendor ID. (40-41)

m_DeviceId
Device ID. (42-43)

x_Unused3
Not used. (44)

m_BusMasterConfig
AMCC Special Options. (45)

x_Unused4[2]
Not used. (46-47)

m_RevisionId
Revision ID. (48)

m_ClassCode
Class code. (49-4c with 4c not used)

m_LatencyTimer
Latency timer. (4d)

m_HeaderType
Specific header type. (4e)

Members

DLL User's Guide for the AlphiDll - 01/22/01 81

m_SelfTest
Self test. (4f)

m_Bar[6]
Base Address Registers. (50-67)

x_Unused5[8]
Not used. (68-6f)

m_ExpansionRom
Expansion ROM Address. (70-73)

x_Unused6[8]
Not used. (74-7b)

m_IntLine
Interrupt line. (7c)

m_IntPin
Interrupt pin. (7d)

m_MinGrant
Minimum grant. (7e)

m_MaxLatency
Maximum latency. (7f)

CardResource Structure
typedef struct {

eTypeOfAccess TypeOfAccess;

} CardResource;

Describes the type of access requested.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

TypeOfAccess
Type of access desired. See eTypeOfAccess.

DeviceCaps Structure
typedef struct {

USHORT wszTrueName[SIZE_TRUE_NAME];

AllowedAccess_t AllowedAccess;

eInterfaceType InterfaceType;

eProcessorType ProcessorType;

ULONG ProcessorSpeed;

ULONG NumBytesDualPortRam;

ULONG NumIpsAccessibleFromHost;

ULONG NumIpsTotal;

ULONG UserIdentifier;

ULONG BootOption;

USHORT VendorId;

USHORT DeviceId;

} DeviceCaps;

Members

DLL User's Guide for the AlphiDll - 01/22/01 82

Represents the device capabilities for this card.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

wszTrueName[SIZE_TRUE_NAME]
NULL terminated UNICODE buffer to receive the true name.

AllowedAccess
Allowed PCI accessible resources. See AllowedAccess_t.

InterfaceType
Type of PCI Interface on card. See eInterfaceType.

ProcessorType
Type of processor on card. See eProcessorType.

ProcessorSpeed
Clock speed given to the DSP.

NumBytesDualPortRam
Size of the dual port RAM.

NumIpsAccessibleFromHost
Number of IPs directly accessible from the host processor.

NumIpsTotal
Total number of IPs on the card.

UserIdentifier
User specified identification.

BootOption
How the board is set to boot.

VendorId
PCI vendor identification.

DeviceId
PCI device identification.

DriverVersionIdentifier Structure
typedef struct {

char VersionIdentifier[SIZE_VERSION_IDENTIFIER];

} DriverVersionIdentifier;

Returned version identifier from the driver.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

VersionIdentifier[SIZE_VERSION_IDENTIFIER]
Buffer to receive the version identifier.

eInterfaceType
enum eInterfaceType {

AMCC_5933,

Members

Members

DLL User's Guide for the AlphiDll - 01/22/01 83

PLX_9080,

OHCI_1394

};

Type of the PCI interface on the card.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

AMCC_5933
AMCC 5933 interface.

PLX_9080
PLX PCI 9080 interface.

OHCI_1394
1394 interface through host OHCI driver.

eIntType
enum eIntType {

Disable,

SwMb1_FullFromCard,

SwMb2_FullFromCard,

SwMb3_FullFromCard,

SwMb4_FullFromCard,

HwMb_FullFromCard,

SwMb1_EmptyToCard,

SwMb2_EmptyToCard,

SwMb3_EmptyToCard,

SwMb4_EmptyToCard

};

Type of mailbox interrupt. Applicable only to AMCC devices.

Defined in: D:/ALPHIPCI/INCLUDE/ALPHIDLL.H

Disable
Mailbox interupts disabled.

SwMb1_FullFromCard
Processor on card has written to (LSB of) Mailbox 1.

SwMb2_FullFromCard
Processor on card has written to (LSB of) Mailbox 2.

SwMb3_FullFromCard
Processor on card has written to (LSB of) Mailbox 3.

SwMb4_FullFromCard
Processor on card has written to (LSB of) Mailbox 4.

HwMb_FullFromCard
Hardware on card has written to (MSB of) Mailbox 4.

SwMb1_EmptyToCard
Processor on card has read from (LSB of) Mailbox 1.

SwMb2_EmptyToCard
Processor on card has read from (LSB of) Mailbox 2.

Members

Members

DLL User's Guide for the AlphiDll - 01/22/01 84

SwMb3_EmptyToCard
Processor on card has read from (LSB of) Mailbox 3.

SwMb4_EmptyToCard
Processor on card has read from (LSB of) Mailbox 4.

eIoType
enum eIoType {

ReadFileRequest,

WriteFileRequest,

WaitForInterruptRequest,

HostSharedMemory

};

Type of I/O Request.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

ReadFileRequest
ReadFile requests

WriteFileRequest
WriteFile requests

WaitForInterruptRequest
IOCTL_ALPHIPCI_WAIT_FOR_INTERRUPT requests.

HostSharedMemory
Shared HOST memory from IOCTL_ALPHIPCI_SHARE_HOST_MEMORY.

eProcessorType
enum eProcessorType {

None,

Single_C31,

Single_C32

};

Presence and type of the processor on the card.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

None
No processor present.

Single_C31
TMS320C31 DSP Processor.

Single_C32
TMS320C32 DSP Processor.

Members

Members

DLL User's Guide for the AlphiDll - 01/22/01 85

eTypeOfAccess
enum eTypeOfAccess {

AmccRegisters,

PlxRegisters,

DualPortRam,

Ip0IdSpace,

Ip0IoSpace,

Ip0MemorySpace,

Ip1IdSpace,

Ip1IoSpace,

Ip1MemorySpace,

Ip2IdSpace,

Ip2IoSpace,

Ip2MemorySpace,

Ip3IdSpace,

Ip3IoSpace,

Ip3MemorySpace,

SummitRegisters,

HostControlRegion,

LastEntry

};

Represents the type of access requested.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Not all of these are necessarily applicable to the device you are communicating with.

In hindsight, the HostControlRegion and the SummitRegisters should probably be the
same region.

AmccRegisters
AMCC PCI Operation Registers.

PlxRegisters
PLX PCI Operation Registers.

DualPortRam
Dual Ported RAM.

Ip0IdSpace
IP A ID Space.

Ip0IoSpace
IP A IO Space.

Ip0MemorySpace
IP A Memory Space.

Ip1IdSpace
IP B ID Space.

Ip1IoSpace
IP B IO Space.

Ip1MemorySpace
IP B Memory Space.

Comments

Developer
Notes

Members

DLL User's Guide for the AlphiDll - 01/22/01 86

Ip2IdSpace
IP C ID Space.

Ip2IoSpace
IP C IO Space.

Ip2MemorySpace
IP C Memory Space.

Ip3IdSpace
IP D ID Space.

Ip3IoSpace
IP D IO Space.

Ip3MemorySpace
IP D Memory Space.

SummitRegisters
Summit Registers (1553)

HostControlRegion
Direct access (by HOST) to hardware on the card.

LastEntry
Last Entry.

InterruptCause Structure
typedef struct {

ULONG Value;

} InterruptCause;

Represents the value read from the AMCC interrupt control status register during the
interrupt routine.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Value
Value that was in AMCC.INTCSR at the time of the interrupt.

IntType Structure
typedef struct {

ULONG Type;

} IntType;

Type of interrupt.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Type
Type of interrupt. See eIntType.

Members

Members

DLL User's Guide for the AlphiDll - 01/22/01 87

IoType Structure
typedef struct {

eIoType Type;

} IoType;

Type of pending I/O requests to cancel.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Type
Type of pending I/O requests to cancel. See eIoType.

LinearAddress Structure
typedef struct {

PVOID Address;

ULONG Length;

} LinearAddress;

Represents a linear address directly accessible by pointer dereference.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Address
Linear address.

Length
Length of the mapping.

MailboxStatus Structure
typedef struct {

ULONG Value;

} MailboxStatus;

Represents either the mailboxes of interest or the current mailbox status.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Value
Value.

PhysAddrsOfCardResources Structure
typedef struct {

ULONG PhysAddrAmccRegisters;

ULONG LengthAmccRegisters;

Members

Members

Members

DLL User's Guide for the AlphiDll - 01/22/01 88

ULONG PhysAddrRegion1;

ULONG LengthRegion1;

ULONG PhysAddrRegion2;

ULONG LengthRegion2;

} PhysAddrsOfCardResources;

Returns the physical adresses of the card resources.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

PhysAddrAmccRegisters
Physical address of the (memory mapped) AMCC registers.

LengthAmccRegisters
Length of the AMCC registers.

PhysAddrRegion1
Physical address of the first passthrough region (usually region 1).

LengthRegion1
Length of the first passthrough region.

PhysAddrRegion2
Physical address of the second passthrough region (usually region 3).

LengthRegion2
Length of the second passthrough region.

PLX_REGS Structure
typedef struct {

volatile ULONG las0rr;

volatile ULONG las0ba;

volatile ULONG barbr;

volatile ULONG bigend;

volatile ULONG eromrr;

volatile ULONG eromba;

volatile ULONG lbrd0;

volatile ULONG dmrr;

volatile ULONG dmlbam;

volatile ULONG dmlbai;

volatile ULONG dmpbam;

volatile ULONG dmcfga;

volatile ULONG oplfis;

volatile ULONG oplfim;

volatile ULONG mbox[8];

volatile ULONG p2ldbell;

volatile ULONG l2pdbell;

volatile ULONG intcsr;

volatile ULONG cntrl;

volatile ULONG pcihidr;

volatile ULONG pcihrev;

volatile ULONG dmamode0;

volatile ULONG dmapadr0;

volatile ULONG dmaladr0;

volatile ULONG dmasiz0;

volatile ULONG dmadpr0;

volatile ULONG dmamode1;

Members

DLL User's Guide for the AlphiDll - 01/22/01 89

volatile ULONG dmapadr1;

volatile ULONG dmaladr1;

volatile ULONG dmasiz1;

volatile ULONG dmadpr1;

volatile ULONG dmacsr;

volatile ULONG dmaarb;

volatile ULONG dmathr;

volatile ULONG mqcr;

volatile ULONG qbar;

volatile ULONG ifhpr;

volatile ULONG iftpr;

volatile ULONG iphpr;

volatile ULONG ipfpr;

volatile ULONG ofhpr;

volatile ULONG oftpr;

volatile ULONG ophpr;

volatile ULONG opfpr;

volatile ULONG qsr;

volatile ULONG las1rr;

volatile ULONG las1ba;

volatile ULONG lbrd1;

} PLX_REGS;

PLX 9080 Operation Registers as seen from the PCI bus.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

las0rr
PCI to local address space 0 range.

las0ba
PCI to local address space 0 base address.

barbr
Mode / Arbitration Register.

bigend
Big/Litle Endian Descriptor Register.

eromrr
Expansion ROM range register.

eromba
Expansion ROM base address.

lbrd0
local address space 0 / EROM descriptor register.

dmrr
Local to PCI range register.

dmlbam
Local to PCI base address memory.

dmlbai
Local to PCI base address I/O or CFG.

dmpbam
Local to PCI remap register for memory.

dmcfga
Local to PCI configuration register for I/O or CFG.

Members

DLL User's Guide for the AlphiDll - 01/22/01 90

oplfis
Outbound post list FIFO interrupt status register.

oplfim
Outbound post list FIFO interrupt mask register.

mbox[8]
Mailbox registers.

p2ldbell
PCI to local doorbell register.

l2pdbell
Local to PCI doorbell register.

intcsr
Interrupt control / status register.

cntrl
Serial NVRAM, PCI Commands, User IO, Init.

pcihidr
Permanent configuration ID register.

pcihrev
Permanent revision register.

dmamode0
DMA 0 mode register.

dmapadr0
DMA 0 PCI address register.

dmaladr0
DMA 0 local address register.

dmasiz0
DMA 0 size register (BYTES).

dmadpr0
DMA 0 descriptor pointer register.

dmamode1
DMA 1 mode register.

dmapadr1
DMA 1 PCI address register.

dmaladr1
DMA 1 local address register.

dmasiz1
DMA 1 size register (BYTES).

dmadpr1
DMA 1 descriptor pointer register.

dmacsr
DMA 0/1 control / status register.

dmaarb
Mode / Arbitration Register (repeated).

dmathr
DMA threshold register.

mqcr
Messaging queue configuration register.

DLL User's Guide for the AlphiDll - 01/22/01 91

qbar
Queue base address register.

ifhpr
Inbound free head pointer register.

iftpr
Inbound free tail pointer register.

iphpr
Inbound post head pointer register.

ipfpr
Inbound post tail pointer register.

ofhpr
Outbound free head pointer register.

oftpr
Outbound free tail pointer register.

ophpr
Outbound post head pointer register.

opfpr
Outbound post tail pointer register.

qsr
Queue status / control register

las1rr
PCI to local address space 1 range.

las1ba
PCI to local address space 1 base address.

lbrd1
PCI to local address space 1 descriptor register.

PlxNvramImage Structure
typedef struct {

USHORT m_DeviceId;

USHORT m_VendorId;

USHORT m_ClassCode_H;

USHORT m_ClassCode_L;

UCHAR m_MinGrant;

UCHAR m_MaxLatency;

UCHAR m_IntLine;

UCHAR m_IntPin;

USHORT m_MB0_H;

USHORT m_MB0_L;

USHORT m_MB1_H;

USHORT m_MB1_L;

USHORT m_las0rr_H;

USHORT m_las0rr_L;

USHORT m_las0ba_H;

USHORT m_las0ba_L;

USHORT m_barbr_H;

USHORT m_barbr_L;

USHORT m_bigend_H;

DLL User's Guide for the AlphiDll - 01/22/01 92

USHORT m_bigend_L;

USHORT m_eromrr_H;

USHORT m_eromrr_L;

USHORT m_eromba_H;

USHORT m_eromba_L;

USHORT m_lbrd0_H;

USHORT m_lbrd0_L;

USHORT m_dmrr_H;

USHORT m_dmrr_L;

USHORT m_dmlbam_H;

USHORT m_dmlbam_L;

USHORT m_dmlbai_H;

USHORT m_dmlbai_L;

USHORT m_dmpbam_H;

USHORT m_dmpbam_L;

USHORT m_dmcfga_H;

USHORT m_dmcfga_L;

USHORT m_SubsysDeviceId;

USHORT m_SubsysVendorId;

USHORT m_las1rr_H;

USHORT m_las1rr_L;

USHORT m_las1ba_H;

USHORT m_las1ba_L;

USHORT m_lbrd1_H;

USHORT m_lbrd1_L;

USHORT m_ExpansionRom_H;

USHORT m_ExpansionRom_L;

ULONG m_UserId;

ULONG m_SizeDualPortRam;

ULONG m_ClockSpeedDsp;

ULONG m_ClockSpeed8530;

ULONG m_BootOption;

ULONG m_SerialNumber;

UCHAR m_HardwareRevision[4];

UCHAR m_ProgrammedLogicRevision[4];

} PlxNvramImage;

NVRAM Image format. See the PLX documentation for certain details.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

m_DeviceId
Device ID. (0-1)

m_VendorId
Vendor ID. (2-3)

m_ClassCode_H
Class code. (4-5)

m_ClassCode_L
Class code. (6-7)

m_MinGrant
Minimum grant. (8)

m_MaxLatency
Maximum latency. (9)

m_IntLine
Interrupt line. (a)

Members

DLL User's Guide for the AlphiDll - 01/22/01 93

m_IntPin
Interrupt pin. (b)

m_MB0_H
Mailbox0 Hi Word. (c-d)

m_MB0_L
Mailbox0 Lo Word. (e-f)

m_MB1_H
Mailbox1 Hi Word. (10-11)

m_MB1_L
Mailbox1 Lo Word. (12-13)

m_las0rr_H
PCI to local address space 0 range. (14-15)

m_las0rr_L
PCI to local address space 0 range. (16-17)

m_las0ba_H
PCI to local address space 0 base address. (18-19)

m_las0ba_L
PCI to local address space 0 base address. (1a-1b)

m_barbr_H
Mode / Arbitration Register. (1c-1d)

m_barbr_L
Mode / Arbitration Register. (1e-1f)

m_bigend_H
Big/Litle Endian Descriptor Register. (20-21)

m_bigend_L
Big/Litle Endian Descriptor Register. (22-23)

m_eromrr_H
Expansion ROM range register. (24-25)

m_eromrr_L
Expansion ROM range register. (26-27)

m_eromba_H
Expansion ROM base address. (28-29)

m_eromba_L
Expansion ROM base address. (2a-2b)

m_lbrd0_H
local address space 0 / EROM descriptor register. (2c-2d)

m_lbrd0_L
local address space 0 / EROM descriptor register. (2e-2f)

m_dmrr_H
Local to PCI range register. (30-31)

m_dmrr_L
Local to PCI range register. (32-33)

m_dmlbam_H
Local to PCI base address memory. (34-35)

m_dmlbam_L
Local to PCI base address memory. (36-37)

DLL User's Guide for the AlphiDll - 01/22/01 94

m_dmlbai_H
Local to PCI base address I/O or CFG. (38-39)

m_dmlbai_L
Local to PCI base address I/O or CFG. (3a-3b)

m_dmpbam_H
Local to PCI remap register for memory. (3c-3d)

m_dmpbam_L
Local to PCI remap register for memory. (3e-3f)

m_dmcfga_H
Local to PCI configuration register for I/O or CFG. (40-41)

m_dmcfga_L
Local to PCI configuration register for I/O or CFG. (42-43)

m_SubsysDeviceId
Device ID. (44-45)

m_SubsysVendorId
Vendor ID. (46-47)

m_las1rr_H
PCI to local address space 1 range. (48-49)

m_las1rr_L
PCI to local address space 1 range. (4a-4b)

m_las1ba_H
PCI to local address space 1 base address. (4c-4d)

m_las1ba_L
PCI to local address space 1 base address. (4e-4f)

m_lbrd1_H
PCI to local address space 1 descriptor register. (50-51)

m_lbrd1_L
PCI to local address space 1 descriptor register. (52-53)

m_ExpansionRom_H
Expansion ROM Address. (54-55)

m_ExpansionRom_L
Expansion ROM Address. (56-57)

m_UserId
User ID. (5a-5b)

m_SizeDualPortRam
Size of Dual Port RAM in bytes. (5e-5f)

m_ClockSpeedDsp
Clock speed of the DSP in Hertz. (62-63)

m_ClockSpeed8530
Clock speed of PCLK at the 8530 in Hertz. (66-67)

m_BootOption
What to do at RESET. (6a-6b)

m_SerialNumber
Serial number in decimal. (6e-6f)

m_HardwareRevision[4]
Three character string describing hardware version. (70-73)

DLL User's Guide for the AlphiDll - 01/22/01 95

m_ProgrammedLogicRevision[4]
Three character string describing FPGA version. (74-77)

PortType Structure
typedef struct {

USHORT Port;

ULONG Value;

} PortType;

Type of I/O Port Access.

Defined in: D:/ALPHIPCI/INCLUDE/DDALPHIP.H

Port
Offset into AMCC registers to access.

Value
I/O Value Read/Write to Port.

Members

