CPCI-SIP-PLX

Slave 2- IndustryPack_® Carrier for 3U *CompactPCI*[™] systems

REFERENCE MANUAL

824-12-000-4000 Version 1.2 August 2008

ALPHI TECHNOLOGY CORPORATION

1898 E. Southern Avenue Tempe, AZ 85282 USA Tel: (480) 838-2428 Fax: (480) 838-4477

<u>NOTICE</u>

The information in this document has been carefully checked and is believed to be entirely reliable. While all reasonable efforts to ensure accuracy have been taken in the preparation of this manual, ALPHI TECHNOLOGY assumes no responsibility resulting from omissions or errors in this manual, or from the use of information contain herein.

ALPHI TECHNOLOGY reserves the right to make any changes, without notice, to this or any of ALPHI TECHNOLOGY's products to improve reliability, performance, function or design.

ALPHI TECHNOLOGY does not assume any liability arising out of the application or use of any product or circuit described herein; nor does ALPHI TECHNOLOGY convey any license under its patent rights or the rights of others.

ALPHI TECHNOLOGY CORPORATION

All Rights Reserved

This document shall not be duplicated, nor its contents used for any purpose, unless express permission has been granted in advance.

ALPHI TECHNOLOGY CORP. Page ii

REV 1.2

TABLE OF CONTENTS

1. G	SENERAL DESCRIPTION	3
1.1		3
1.2	FUNCTIONAL DESCRIPTION	3
1.3	PXI_TRIG[10]	4
1.4	CPCI CONFIGURATION REGISTERS	
1.5	CPCI BASE ADDRESS REGISTERS	
1.6	CPCI OPERATION REGISTERS	
2. L	OCAL SIDE	7
2.1	I/O MAP	
2.2		
2.3	LOCAL REGISTERS	
2.4		14
3. IF	P DETAILS	15
3.1	IP MODULE ID SPACE	15
3.2	IP MODULE IO SPACE	15
3.3	IP MODULE MEMORY SPACE	
3.4	IP MODULE INTERRUPT SPACE	
4. R	RESET SIGNALS	16
5. L	.ED INDICATORS	17
6. C	CONNECTIONS	17
6.1		

Figure 1.1: Block Diagram_____

ALPHI TECHNOLOGY CORP. Page 1

REV 1.2

3

Figure 1.2: Jumper and Connector Locations		
Table 2.1: CPCI Configuration Registers	5	
Table 2.2: Base Address and Use		
Table 2.3: PCI Configuration Space		
Table 3.1: IP ID and I/O Regions	7	
Table 3.2: IP Memory Regions	8	
Table 3.3: Local registers	9	
Table 3.4: CPCI IP Interrupt enable REGISTER	10	
Table 3.5: CPCI IP Strobe REGISTER	11	
Table 3.6: CPCI IP DMA REGISTER	11	
Table 4.1: Typical ID Space Layout	15	
Table 6.1: LED Descriptions	17	
Table 7.1: I/O Connector Model Numbers	17	

HISTORY:

1.0 RELEASE

1.1CORRECT BOARD SILKSCREEN AND ADDRESSES

1.2 CORRECT BASE ADDRESS 2 FOR I/O ACCESS

ALPHI TECHNOLOGY CORP. Page 2

REV 1.2

2.0

1. GENERAL DESCRIPTION

1.1 INTRODUCTION

The CPCI-SIP-PLX is a 3U format CompactPCI (CPCI) bus IP carrier. The **CPCI-SIP-PLX** provides mechanical support and the electrical interfaces for two single width IP modules. Multiple **CPCI-SIP-PLX** boards may be installed in a single system. The primary features of the **CPCI-SIP-PLX** are as follows:

- Support for up to two IP modules
- 8 MHz or 32 MHz IP clock operation by IP.
- Direct I/O or Memory mapped access from CPCI bus via PLX 9080 PCI Chip
- Full interrupt support of host
- Front panel I/O connectors for all IP's
- Two PXI_TRIG[1..0] signals

1.2 FUNCTIONAL DESCRIPTION

A functional block diagram of the CPCI-SIP-PLX is presented below in Figure 1-1.

The jumper placement and the connector placement are depicted in Figure 1-2.

The **CPCI-SIP-PLX** operates as a slave that is managed by the host processor on the CPCI bus.

The **CPCI-SIP-PLX** is supported by ALPHI Technology under *Windows XP* by a **Board Support Package, which** is supplied with the card. Other documentation supplied with the card will describe this support in full detail.

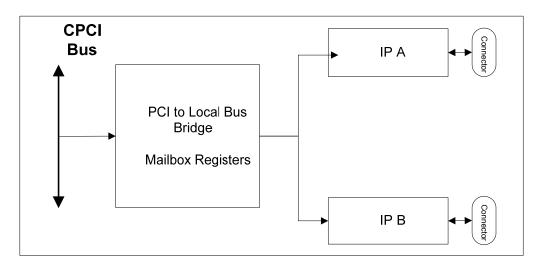


Figure 1.1: Block Diagram

ALPHI TECHNOLOGY CORP.

Page 3

REV 1.2

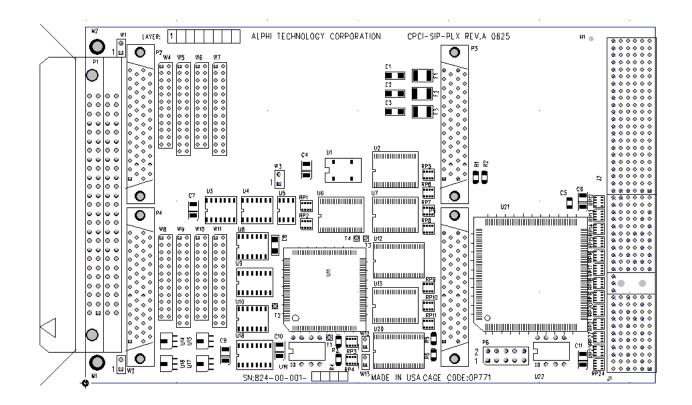


Figure 1.2: Jumper and Connector Locations

1.3 PXI_TRIG[1..0]

The two lines PXI_TRG[1..0] are located at the jumper W1 and W2. W1 pin 1 = PXI_TRG[0], pin 2 = GND

W2 pin 1 = PXI_TRG[1], pin 2 = GND

ALPHI TECHNOLOGY CORP. Page 4

REV 1.2

HOST (CPCI) SIDE

1.4 CPCI CONFIGURATION REGISTERS

The card presents the following configuration values to the CPCI system, based on the values stored in the NVRAM device read by the PLX 9080 PCI interface chip.

Register	Value (Meaning)
Vendor ID	0x13c5 (ALPHI Technology)
Device ID	0x0113 (CPCI-SIP-PLX)
Revision ID	0x00
Class Code	0xff0000 (Device does not fit into defined class codes)
Interrupt Line	Oxff
Interrupt Pin	A
Multifunction Device	No
Build In Self Test	No
Latency Timer	0x00
Minimum Grant	0x00
Maximum Latency	0x00
Expansion ROM Size	None

Table 1.1: CPCI Configuration Registers

1.5 CPCI BASE ADDRESS REGISTERS

The card requests base address regions from the CPCI system after RESET, based on the values stored in the NVRAM device read by the PLX 9080 PCI interface chip.

The decode addresses of these regions are assigned by the host processor. The **CPCI-SIP-PLX** uses 3 of the 4 PLX 9080 mapped base address registers. The PLX 9080 is normally programmed at the factory to request the following resource from the CPCI BIOS:

BAR	From	То	Description	Туре	SIZE
0	0x00000000	0x0000003F	PLX PCI Operation Registers	I/O	64
2	0x00000000	0x000007FF	IP ID and IO Region	I/O	2 K
3	0x00000000	0x00FFFFFF	IP Memory Region	MEM	16M

Table 1.2: Base Address and Use

ALPHI TECHNOLOGY CORP.

Page 5

1.6 CPCI OPERATION REGISTERS

The host processor communicates with the **CPCI-SIP-PLX** card via the PLX pass-through interface. After the base address register has been programmed by the CPCI configurator, incoming CPCI I/O or Memory cycles are used to access the registers of the PLX 9080 chip. The PCI Operation Registers of the PLX 9080 chip are depicted below:

NAME	PCI Addr.	31 – 24	23 – 16	15 – 8	7 – 0
PCIIDR	0x00	Device ID		Vendor ID	
PCICR	0x04	Status		Con	nmand
PCISR	0x08	Clas	s Code		Revision ID
PCIREV	0x0C	BIST	Header Type	PCI Latency Timer	Cache Line Size
PCICCR	0x10	-	CI Base Addr		
PCICLSR	0x14		CI Base Addr ccess to PLX		
PCILTR	0x18	PCI Base Address 2 (Memory Access to DSP SRAM, IP IOSPACE, and other card registers)			
PCIHTR	0x1C	PCI Base Address 3 (Memory Access to DPR)			
PCIBISTR	0x20	Unused PCI Base Address 4			
PCIBAR0	0x24	Unused PCI Base Address 5			
PCIBAR1	0x28	Cardbus CIS Pointer (Not Supported)			
PCIBAR2	0x2C	Subsystem ID Subsystem Vendor ID			
PCIBAR3	0x30	PCI Base Address for Expansion ROM			
PCIBAR4	0x34	Reserved			
PCIBAR5	0x38	Reserved			
PCICIS	0x3C	Max Latency	Min Grant	Interrupt Pin	Interrupt Line

Table 1.3: PCI Configuration Space

ALPHI TECHNOLOGY CORP.

Page 6

2. LOCAL SIDE

2.1 I/O MAP

The local I/O space is shared between the IP space and the local registers.

Two (2Kbytes) are reserved by the board to access all the locals registers and IP registers. The local bus is a 16-bits bus. PCI can be 8,16 OR 32-bits access.

The local registers are located within the I/O space of the IP_A from I/O +\$C0 to \$FF

FROM	ТО	R/W	REGION
0x00	0x3F	R/W	IP_A ID Space
0x80	0x81	R	IP_A Interrupt Vector 0
0x82	0x83	R	IP_A Interrupt Vector 1
0xC0	0xFF	R/W	Local status and control
			registers
0x100	0x17F	R/W	IP_A I/O Space
0x200	0x23F	R/W	IP_B ID Space
0x280	0x281	R	IP_B Interrupt Vector 0
0x282	0x283	R	IP_B Interrupt Vector 1
0x300	0x37F	R/W	IP_B I/O Space

Table 2.1: IP ID and I/O Regions

ALPHI TECHNOLOGY CORP.

Page 7

2.2 IP MEMORY MAP

Each IP module can decode up to 8 Mbytes of Memory. A total of 16 Mbytes have been allocated by the PCI host. Access are 8/16 or 32-bits . As the local bus is 16 bus wide a 32 bit access will be two back to back access.

PLX 9080	FROM	ТО	R/W	REGION
BAR3	0x00000000	0x007FFFFF	R/W	IP_A Memory Space
BAR3	0x00800000	0x00FFFFFF	R/W	IP_B Memory Space

Table 2.2: IP Memory Regions

ALPHI TECHNOLOGY CORP.

Page 8

REV 1.2

2.3 LOCAL REGISTERS

The CPCI_4SIP_plx has registers use to defined the functionality of each IP and to route and/or enable the different interrupts or strobes.

BASE + \$	R/W	Bit used	Name	Function
0x88	W	XX	IP_GLOBAL_RESET	Global reset for all IP'.
0xC0	R/W	70	CTRL_0	IP's clock speed
0XC2	R/W	0	IP ERROR signal	
0xA0	R/W	70	INT0_en Registers	Enable IP's interrupts to be source of LINTI # signal
0xA2	R/W	30	INT2_en Registers	Enable IP strobes from IP's to be source of LINTI # signal
0xA2	R/W	74	INT2_en Registers	Enable PXI_TRIG[10] lines to be source of LINTI # signal
0xA6	R/W	30	INT6_en Registers	Enable IP_DMA's request lines to be source of LINTI # signal
0xA8	W	XX	IP_A reset	A write generate an IP_reset to IP_A.
0xA8	R	70	IP's Interrupt status	Status of IP's interrupts.
0xAA	W	XX	IP_B reset	A write generate an IP_reset to IP_B.
0xAA	R	70	IP's Strobe / PXI lines status	Status of IP's strobe lines PXI_TRIG[10] lines
0xAE	R	70	IP's DMA request status	Status of IP's DMA requests lines.
0xD0	R/W	70	IP's strobe	Control source signal for IP's strobe if selected as input.
0xD6	R/W	70	HOST_REG_[30]	Provide a TTL high or Low signal controlled by software to the PXI_TRIG[10] line if selected.
0xD8	R/W	30	PXI_TRIG[0]	PXI_TRIG[0] source signal selection
0xD8	R/W	74	PXI_TRIG[1]	PXI_TRIG[1] source signal selection

Table 2.3: Local registers

xx : any data value

2.3.1 IP_Global _Reset

Base address of IP-A + \$88

A write access(any data) at this location will provide assertion of the IP_RESET line of all the two IP's.

2.3.2 CTRL_0 register

Base address of IP-A + \$C0

This register controls the IP clock speed for each IP.

ALPHI TECHNOLOGY CORP. Page 9

REV 1.2

Bit	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	NA	NA	IP_B	IP_A		LINTI_en		
			clock	clock				

"0" = 8 MHZ IP clock (default)

"1" = 32 MHZ IP clock

When Bit # 2 is set to "1" Interrupt source can be routed to the PLX 9080 through the LINTI # line.

2.3.3 ERROR register

Base address of IP-A + \$C2

If an IP module generate an ERROR signal, it is latched .

Bit # 0 of Base address of IP-A + \$C2 reflect the status of the ERROR line. When "0" an ERROR signal has been detected and latched.

To reset the latch a write access need to be made at the address :

Base address of IP-A + \$C2.

2.3.4 Source selection interrupts

2.3.4.1 INT0_en Register

Base address of IP-A + \$A0

This 8-bits register allows one or more IP's interrupt line to be the source signal for the unique PCI interrupt line LINTI #. A "1" to the associate bit enable the corresponding line.

Status of the interrupts is located at Base address of IP_A + \$A8

Bit	Register Name
Bit 0	INTREQA0
Bit 1	INTREQA1
Bit 2	INTREQB0
Bit 3	INTREQB1
Bit 4	NA
Bit 5	NA
Bit 6	NA
Bit 7	NA

Table 2.4: CPCI IP Interrupt enable REGISTER

ALPHI TECHNOLOGY CORP.

Page 10

REV 1.2

2.3.4.2 INT2_en Registers

Base address of IP-A + \$A2

This 8-bits register allows one or more IP's Strobe line or PXI_TRIG[1..0] (if defined as output) to be the source signal for the unique PCI interrupt line LINTI #. A "1" to the associate bit enable the corresponding line.

Status of the IP Strobe lines is located at Base address of IP_A + \$AA

Bit	Register Name
Bit 0	IP_A STROBE
Bit 1	IP_B STROBE
Bit 2	Not used
Bit 3	Not used
Bit 4	BERR SIGNAL
Bit 5	PXI_TRIG[0]
Bit 6	PXI_TRIG[1]
Bit 7	VCC(NOT USED)

Table 2.5: CPCI IP Strobe REGISTER

2.3.4.3 INT6_en Registers

Base address of IP-A + \$A6

This 8-bits register allows one or more IP's DMA request line to be the source signal for the unique PCI interrupt line LINTI #. A "1" to the associate bit enable the corresponding line.

Status of the IP DMA request lines is located at Base address of IP_A + \$AE

Bit	Register Name
Bit 0	DMARQA0
Bit 1	DMARQA1
Bit 2	DMARQB0
Bit 3	DMARQB1
Bit 4	NA
Bit 5	NA
Bit 6	NA
Bit 7	NA

Table 2.6: CPCI IP DMA REGISTER

ALPHI TECHNOLOGY CORP.

Page 11

REV 1.2

2.3.5 IP_reset registers

Base address of IP-A + \$A8-\$AE

Each IP can be individually reset by a host write at address:

A global reset can also be generated by writing at address Base address of IP-A + \$88

BASE ADDRESS IP_A +	IP_Reset
\$A8	Α
\$AA	В

2.3.6 IPSTROBE source register

Base address of IP-A + \$D0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Not used	Not used	Gate_en_B	Gate_en_A	Not used	Not used	Gate_1	Gate_0

Gate_[3..0]

Four bits multiplexer control lines as selection of IPSTROBE for one or more IP modules.

Gate_[30]	Source to IPSTROBE
0000	IPSTROBE_A
0001	IPSTROBE_B
0010	IPSTROBE_C
0011	IPSTROBE_D
0100	HOST_REG[0]
0101	IPINT_A0
0110	IPINT_A1
0111	IPINT_B0
1000	IPINT_B1
1001	Not used
1010	Not used
1011	Not used
1100	Not used
1101	8MHZ CLOCK
1110	PXI_TRIG[0]
1111	PXI_TRIG[1]

Gate_en_ [A, B, C, D]

When set to a "1" the correspondent IPSTROBE line is enable as OUTPUT and will convey the source signal already selected by the lower bit[3..0] to INDUSTRY-PACK IPSTROBE module.

Base address of IP-A + \$D6

ALPHI TECHNOLOGY CORP. Page 12

REV 1.2

This register use only the FOUR lower bits [3..0] that ,when controlled by the host, can been routed to the IPSTROBE's or the PXI_TRIG[1..0] lines.

Signal name is HOST_REG[3..0].

PXI_SOURCE register

Base address of IP-A + \$D8

Two bi-directional lines are available to the user. Each line can be programmed as input (default) or output.

As INPUT the PXI_TRIG [1..0] line can be routed to the PCI interrupt line through the LINTI # signal or to the IPSTROBE line of each INDUSTRY-PACK module.

As OUTPUT the PXI_TRIG [1..0] can convey a synchronization signal which source can be an interrupt or an IPSTROBE signal from any INDUSTRY-PACK module.

Also a host can access these lines and generate a pulse or a level using HOST_REG[3..0] bits.

Each lower three bit of the half-byte is use as control lines of a 8 to 1 multiplexer to select the source of the signal that will be output to the PXI_TRIG[1..0]. When one of this three bit is ="1" the PXI_TRIG[] line is set as output and an external open drain buffer is enable.

A read-back of the register reflects on the bit #3 and bit #7 the status of the correspondent PXI_TRIG[1..0] lines.

Bit 3	Bit 2	Bit 1	Bit 0
PXI_TRIG[0] LINE STATUS (READ	PXI_IO_02	PXI_IO_01	PXI_IO_00
ONLY)			

Bit 7	Bit 6	Bit 5	Bit 4
PXI_TRIG[1] LINE STATUS (READ ONLY)	PXI_IO_12	PXI_IO_11	PXI_IO_10

ALPHI TECHNOLOGY CORP.

Page 13

PXI_IO_0[20]	Source to PXI_TRIG[0]
000	GND
001	HOST_REG[0]
010	IPSTROBE
011	IPINT_A0
100	IPINT_B0
101	Not used
110	Not used
111	HOST_REG[2]

PXI_IO_1[20]	Source to PXI_TRIG[1]
000	GND
001	HOST_REG[1]
010	IPSTROBE
011	IPINT_A0
100	IPINT_B0
101	Not used
110	Not used
111	HOST_REG[3]

Note: When input the PXI_TRIG[1..0] line are clocked with the local 32Mhz clock.

Example: Generate the 8MHZ clock to the PXI_TRI[1..0] lines

Set IPSTROBE source register	I/O +\$D0 to "0D"
Set DVL COURCE register	1/0 ±¢D9 to "22"

-Set PXI_SOURCE register

I/O +\$D8 to "22".

A read-back of the register reflects on the bit #3 and bit #7 the status of the correspondent PXI_TRIG[1..0] lines.

If the 8MHZ need to be convey to the IPSTROBE_A set **IPSTROBE source register** I/O +\$D0 to "1D"

2.4 TIME-OUT

A Time-out counter will terminate any access to the local board after 3 μ S.

ALPHI TECHNOLOGY CORP. Page 14

REV 1.2

3. IP DETAILS

3.1 IP MODULE ID SPACE

Each IP must support identification PROM. The CPCI-SIP-PLX decodes 64 bytes of ID space for each IP module. The ID PROM contains information about each the IP, which is defined in the Industry Pack Specification. The two IP ID's spaces can be accessed at fixed offsets from Base Address 1, as indicated in Table 2.5. The information required for the most common IP PROM format is shown below:

OFFSET	DESCRIPTION	VALUE
0x00	ASCII "I"	0x49
0x02	ASCII "P"	0x50
0x04	ASCII "A"	0x41
0x06	ASCII "C"	0x43
0x08	Manufacturer ID	
0x0A	Model No	
0x0C	Revision	
0x0E	Reserved	0x00
0x10	Driver ID, Low Byte	
0x12	Driver ID, High Byte	
0x14	Number of bytes used	0x0C
0x16	CRC	
OFFSET	DESCRIPTION	VALUE

Table 3.1: Typical ID Space Layout

3.2 IP MODULE IO SPACE

The CPCI-SIP-PLX decodes 128 bytes of IO space for each IP module. The two IP I/O spaces can be accessed at fixed offsets from Base Address 1, as indicated in Table 2.5.

3.3 IP MODULE MEMORY SPACE

The CPCI-SIP-PLX decodes 8 Mbytes of MEM space for each IP module. The two IP MEM spaces can be accessed at fixed offsets from Base Address 2 as indicated in Table 2.6.

ALPHI TECHNOLOGY CORP. Page 15

REV 1.2

3.4 IP MODULE INTERRUPT SPACE

The CPCI-SIP-PLX routes the interrupts from all IP modules to the LINTI # signal of the PLX 9080.

The CPCI-SIP-PLX decodes 2 16-bit words of INT space for each IP module to supply an optional interrupt vector. The two IP INT spaces can be accessed at fixed offsets from Base Address 1, as indicated in Table 2.5.

Some IP modules may require that the host processor perform a read to INT space to clear pending interrupts.

4. RESET SIGNALS

The **CPCI-SIP-PLX** can be reset from four different sources:

- At power on
- The PLX 9080 has a bit called SYSRST that the HOST can toggle to reset all the IP's at the same time. This will result on the LRESETO #signal to been asserted.
- By performing a write access (any data) to the local registers :
 - Base IP_A +\$A8 for IP_A, Base IP_A +\$AA for IP_B,
- By performing a write access (any data) to the location : Base IP_A +\$88 (Global IP_reset).

ALPHI TECHNOLOGY CORP. Page 16

5. LED INDICATORS

There are Four LED indicators visible at the CPCI card bracket. They are marked with a legend on the bracket, and they are labeled on the PCB as L1 - L3 where L1 is at the top of the card.

The LED's have the following meanings:

LED	Meaning
SL1	CPCI Accessing IP- A
SL2	CPCI HOST accessing
SL3	STROBE accessing
SL4	CPCI Accessing IP- B

6. CONNECTIONS

6.1 IP I/O CONNECTORS (P5,P2)

The I/O signals for the two IP's are directly routed off the card through the front panel.

Connector	I/O for
P1 (lower)	IP_A
P1 (Upper)	IP_B

50 pin Ribbon Style connectors are used to route all the IP I/O signals off the card. ALPHI Technology can supply transition modules and cable assemblies to meet any special requirements. Contact the factory for additional information.

Connectors are manufactured by 3M

Use	Model
On PC Board	3433-D302
Suggested Plug	3425-7600

Table 6.1: I/O Connector Model Numbers

Pin 49

Pin 1

Pin 50

Pin 2

Figure 1.2: IP I/O CONNECTORS

ALPHI TECHNOLOGY CORP. Page 17

REV 1.2